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Abstract

I introduce a generalized propensity score (GPS) based approach to the identi-
fication and estimation of treatment effects from observational social network data,
where formation of social tie between pair of units depends on individual level char-
acteristics. Ignoring the tie formation process, its interaction with the treatment
assignment mechanism and interference induced by the social network can lead to
biased estimation of treatment effects. I propose a unified framework that addresses
these challenges by jointly modeling treatment assignment and network formation,
incorporating their complex interactions in observational social network data. Gen-
eralized propensity score can be semi-parametrically estimated given probabilistic
models for these two processes and functional form of exposure mapping (Aronow
and Samii, 2017) for effective treatment. Average potential outcomes and treatment
effects are estimated with inverse probability weighting estimators. I illustrate the
proposed method in several Monte Carlo studies and an empirical analysis that inves-
tigates the effect of adopting a new political communication technology on political
participation in Uganda.
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1 Introduction

Causal inference with network data has emerged as a vibrant topic in both empirical social

science studies and methodological research, as units under study are inter-connected at

micro or macro level. In behavioral studies, individuals might establish social ties, like

friendships, based on shared characteristics like age or educational background. For cross-

country analyses, connections between countries can be assessed by geographical proximity

or bilateral metrics such as trade volume and joint membership in international bodies.

These examples illustrate the concern of violation of SUTVA in empirical studies when

researchers want to investigate the casual effects of a treatment: when the units of study

are interconnected, a treatment assigned to one unit can influence the potential outcomes

of other units, known as interference or spillover effects in the literature of causal inference.

A popular approach to addressing interference is to fit regression models that incorpo-

rate the treatment variable, a measure of interference, like weighted average of neighbor

units’ treatment status, and a vector of unit level control variables. And treatment effects

are derived from estimated coefficients. This approach may be plausible when the connec-

tions between unit pairs are exogenous1, like geographical location. However, when units

under study are socially connected, the formation of social ties between a pair of units de-

pends on some unit-level features. If those features also affect the behavioral outcome, they

confound the relationship between network formation and outcome (Goldsmith-Pinkham

and Imbens, 2013), and the problem becomes more complex if some of those features also

affect the adoption of treatment. In such scenarios, regression model based approaches may

fail to account for the formation of social network, and they may cause bias in estimation

of treatment effects.

To address this problem, I propose a generalized propensity score (GPS) approach for

identification and estimation of treatment effect. In network data, treatment effects are

defined as differences in the average potential outcomes under different levels of “effective

treatment” (Manski, 2013), which is a function, termed “exposure mapping” in Aronow

and Samii (2017), of the treatment assignment vector and the social network. The chosen

form of this exposure mapping reflects how researchers perceive interference between units.

1It means that no variables affect both outcome and formation of connections between units.
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In this paper, I assume it is flexible but correctly specified 2. Average potential outcomes,

also known as average dose-response function (ADRF), can be identified with generalized

propensity score for the adoption of (each level of) treatment (Imbens, 2000). If we properly

specify probabilistic models for both the treatment assignment mechanism and network

formation process, we can estimate the generalized propensity score for each unit, given

that the exposure mapping depends on the treatment assignment vector and the social

network. Researchers can semi-parametrically estimate generalized propensity scores via

analytical expression if the exposure mapping has a simple functional form. For multi-

valued or continuous treatments, or when the exposure mapping is complex, simulations

based on the probabilistic models can be employed (Aronow and Samii, 2017).

Once the generalized propensity scores are estimated, average potential outcomes as well

as treatment effects can be estimated with the inverse-probability weighting estimators like

the Horvitz–Thompson estimator, Hajek estimator and doubly robust estimator. Uncer-

tainty estimates can be obtained by implementing the network HAC estimator (Kojevnikov

et al., 2021; Leung and Loupos, 2022) that accounts for correlations in the social network.

Besides, I also propose a regression-based estimation procedure (Hirano and Imbens, 2004)

to incorporate weighted networks and continuous treatment assignment.

The endogeneity of social networks complicates the identification and estimation of

treatment effects. Even in experimental studies where treatments are randomized, their

presence can pose challenges in identifying these effects. With observational data, the situ-

ation becomes even more complicated due to the potential interactions between treatment

assignment and network formation. For example, treatment assignment mechanism and

network formation can be simultaneously determined by exogenous covariates (Han et al.,

2021), treatment assignment may affect the tie formation process (Comola and Prina, 2021),

and social network may induce diffusion of treatment adoption (Leung and Loupos, 2022)3.

Moreover, network formation and treatment adoption could even mutually reinforce each

other.

When there exist interactions between network formation and treatment assignment,

2For discussions on potential mis-specifications, readers can turn to studies like Sävje (2023).
3It means that the adoption of treatment by one unit might also affect the likelihood that other units

adopt the treatment.
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various mechanisms could underlie the treatment effects. Consider an instance where we

want to evaluate the impact of a new political communication technology (PCT) on polit-

ical participation. If men are typically more engaged in adopting PCT and participating

in political activities than women, and if individuals of the same gender are more likely to

form social ties, then men tend to connect with more adopters than women. Even after

addressing the confounding influence of gender, neglecting the indirect effects could bias

the estimated effect of PCT adoption on political participation. This stems from the fact

that we are essentially estimating the combination of both direct and indirect effects. A

positive indirect effect can lead to an overestimation of the direct effect, whereas a negative

indirect effect can result in its underestimation. Therefore, it is important to jointly model

treatment assignment mechanism and network formation process to incorporate their in-

teractions.

In fact, joint modeling of both the treatment assignment mechanism and the network

formation process is central to the proposed method. Yet, estimating a combined probabilis-

tic model for these elements can be challenging, particularly when we introduce additional

constraints like row normalization on network entries. To circumvent this complexity, I

propose to factorize these two processes so that researchers can model them separately

or sequentially to simplify estimation under alternative assumptions. I show that this

approach is flexible to incorporate multiple settings.

This paper contributes to the burgeoning literature on causal inference with network

data. It extends the framework of Aronow and Samii (2017) to observational settings and

relaxes the assumption of exogenous network. The idea of modeling network formation

process echoes the insights ofToulis et al. (2021). This studies the problem of network

dynamics as treatment, while my approach distinctively evaluates the joint effect of a

treatment assignment variable and a social network, which is static but random. High-

lighting other relevant studies, Forastiere et al. (2021) and Sanchez-Becerra (2022) also

propose propensity score based approach to casual inference with observational network

data. While working under tighter assumptions, they contend that the exposure mapping

is independent of potential outcomes when controlled for unit-level covariates and other

network nuances. They further suggest parametric models for a direct estimation of gen-
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eralized propensity scores. In contrast, the proposed method is flexible to accommodate

multiple types of treatment variables, networks and their interactions. The trade-off is

computational demand, which may limit its feasibility on large scale network datasets.

Additionally, Jackson et al. (2022) introduces a peer-influenced propensity score and Le-

ung and Loupos (2022) proposed a graph neural network (GNN) based propensity score.

Both methods can incorporate the diffusion of treatment adoption induced by the network,

operating under the assumption that networks are either static or exogenous.

The rest of the paper is organized as follows. Section 2 outlines the contextual back-

ground of a motivating example that investigates the effect of adoption of a new political

communication technology on political participation in Uganda. In Section 3, I set up the

potential outcome framework, define the causal estimands, and develop key identification

assumptions. Section 4 introduces the generalized propensity score based approach and de-

tails of joint modeling of treatment assignment and network formation process in different

scenarios. Section 5 illustrates details of estimation and inference based on the general-

ized propensity score. Section 6 reports results of several Monte Carlo studies designed to

investigate the finite sample properties of the proposed method. Section 7 provides a com-

parison of the estimation results from our motivating example, contrasting the proposed

method with some existing estimation strategies. The last section concludes.

2 A Motivating Example

Political scientists are interested in whether the adoption of information and communica-

tion technology (ICT) promotes political participation in developing countries. However,

existing literature provides mixed evidence on the effect of ICT adoption on political par-

ticipation. For example, Harrison and List (2004) conducted a small-scale framed field

experiment in Uganda. They found that, compared to existing political communication

channels, marginalized populations utilized short message service (SMS)-based communi-

cation at relatively higher rates. They concluded that ICT adoption has a “flattening”

effect on political participation. This conclusion is plausible as marginalized populations

often have limited opportunities to communicate with politicians. As a result, they might

be less inclined to bear the high costs of political participation. ICT innovations can
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reduce communication costs, potentially increasing political participation among marginal-

ized groups. However, in a subsequent nation-wide field experiment in Uganda, Grossman

et al. (2020) found that introducing a new political communication system did not signif-

icantly affect political engagement. Most existing research assumes the independence of

units under study. However, the presence of social networks might contaminate estimates

of treatment effects. In this paper, I use replication data from Ferrali et al. (2020) and

Eubank et al. (2021) to investigate the effect of adopting a new political communication

technology, the U-Bridge program, on political participation in 16 Ugandan villages. In

these villages, residents may share various types of social ties.

I begin by outlining the contextual background. The U-Bridge program was imple-

mented in a district located in northwestern Uganda. It allows residents to contact district

officials via text message, which is both free and anonymous. The program was imple-

mented in a field experiment that encouraged usage in 131 randomly selected villages.

Residents from treatment villages were invited to periodic community meetings about ways

to communicate with local officials. The first round of meetings was held in late 2014. To

investigate the pattern of adoption of U-Bridge, Ferrali et al. (2020) conducted in-person

surveys in 16 treatment villages in 2016, two years after launch of the program. The surveys

gathered multiple individual-level variables such as age, gender, attendance at meetings,

U-Bridge adoption status, and various social ties between resident pairs.

In this motivating example, I regard the adoption of U-Bridge as a binary treatment

indicator. The outcome variable is a continuous summary index of political participation

that aggregates political actions in the last 12 months. For structure of social networks,

I follow the methods of Ferrali et al. (2020) and Sanchez-Becerra (2022) to measure con-

nection between resident pairs. I assume that two residents within the same village are

connected if they share any of the four types of social ties: family relationships, friendships,

lender relationships, or problem-solving connections. Consequently, connections between

residents are undirected. I exclude social ties spanning different villages, which reduces

the overall network connecting residents to 16 distinct components. Other individual level

covariates include age, gender, levels of income, binary indicators representing whether a

resident has attained secondary education, whether they occupy a formal leadership role
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in the village, and whether they own a phone, and a behavioral proxy measure of care for

the community. A detailed variable description is available in the appendix of Ferrali et al.

(2020). The original survey data comprises information on 3,184 respondents across the 16

treatment villages. After excluding entries with missing values, this study’s dataset covers

3,018 respondents, with 135 of them having adopted U-Bridge.

Identifying and estimating the effect of U-Bridge on political participation poses several

challenges. First, individual-level covariates might influence both U-Bridge adoption and

political participation. Second, the existence of social networks could lead to spillover

effects. For instance, the adoption of U-Bridge by one resident might impact others’ political

activities due to the transmission of information along social ties. Moreover, the adoption

of U-Bridge by one resident might also affect the likelihood of adoption by others (see

Table 4 in Section 7), known as peer influence in treatment adoption (Jackson et al.,

2022). Lastly, these social networks are not exogenously determined, and individual-level

covariates could influence social tie formation. For example, Figure 1 suggests that residents

of the same gender are more likely to form social ties and that village leaders generally have

more connections. In fact, the proportion of social ties where the resident-pair are of the

same gender is about 0.64, and village leaders tend to have nearly doubled social ties

compared to ordinary residents. In Section 7, I employ the proposed method to estimate

the treatment effect of U-Bridge adoption and contrast the findings with results from some

other estimation strategies.

3 Interference in the Presence of Social Network

3.1 Notation

Suppose we have a cross-sectional dataset that includes N units. We focus on the case of a

single large network, while the results can be generated to datasets consisting of multiple

networks or clusters like the settings in Hudgens and Halloran (2008) and Sanchez-Becerra

(2022). Let us denote W an observed network, a (N × N) random adjacency matrix

with entry wij specifying the connection between unit i and j. In the terminology of

network analysis, we denote the associated random graph G for W as a pair: (V , E), where
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Figure 1: Network Visualization for Village Indexed 9

Note: Size of each vertex is proportional to the square root of degree. In the left panel, vertex in blue

represents respondent whose gender is female. In the right panel, vertex in red represents respondent who

occupies formal leadership role within village.

V = {1, . . . , N} is the set of units 4 and E is the set of edges, i.e., (i, j) ∈ E if wij > 0. If G

is undirected, (i, j) = (j, i), otherwise (i, j) and (j, i) are different edges ∀i, j. W can be a

weighted matrix, where the strength of connections between unit i, j and i, k are different

if wij ̸= wik. For notational convenience, in this paper we assume that W is unweighted.

That is, wij ∈ {0, 1} ∀i, j. We denote W the sample space of W .

We denote Di the treatment assigned to unit i, which can be binary, multi-valued

or even continuous. Yi is the observed outcome of interest. In vector form, we denote

D = (D1, . . . , DN) a (N × 1) the vector of treatment assignments and Y = (Y1, . . . , YN)

the vector of observed outcomes for all units. We denote D the sample space of D. When

Di is binary, we have D = {0, 1}N .

Finally, we denote Xi a (p × 1) vector of observed (pre-treatment) covariates for unit

i. For network data, Xi can be decomposed into two parts: confounders that affect the

adoption of the treatment, and covariates contributing to observed homophily that affects

network formation. We denote the first part XD
i and the second part XW

i . It is worth

4They are also called nodes or vertices in network analysis. We use the term “units” through out this

paper for consistency.
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noting that these two subsets, XD
i and XW

i , are not always mutually exclusive, meaning

there may be instances of overlap where certain covariates simultaneously impact both the

adoption of treatment and network formation. In addition, XW
i could also incorporate

dyadic covariates, such as geographical distance or the bilateral trade volume between

country pairs. In matrix form, let X = (X ′
1, . . . , X

′
N) denote the matrix that aggregates all

the covariate vectors for each unit. Similarly, XD and XW are the corresponding matrices

for the aforementioned subsets of covariates. To maintain simplicity and consistency in our

terminology, we will use the term “covariate” to refer to Xi, X
D
i , and XW

i .

3.2 Potential outcomes in social network data

In most social network data, the observed network W is random and endogenous. I extend

the potential outcome framework proposed in Rubin (1974) to account for the potential

interference induced byW . In this scenario, the observable outcome for unit i is determined

by the entire treatment assignment vector D and the network W , which can be written

as Yi(D,W ). Under the assumption of no multiple versions of treatment (consistency)

(Rubin, 1986), the observed outcome Yi = Yi(d,w) if D = d and W = w 5. In this case,

even if the treatment assignment vector d remains the same, as long as network changes, the

potential outcome for each unit may be different. In Figure 2, network w in the left panel

is denser than network w′ in the right panel, while the treatment status for each unit is the

same. In the extended potential outcome framework, Yi(d,w) may not equal Yi(d,w
′) for

each unit i. Note that notation of potential outcome in the form of Yi = Yi(d,w) is quite

general, in that we regard D and W as “joint” treatment assignments, and incorporates

the following examples as special cases.

Example 1: No interference.

The consistency assumption implies that the mechanism used for treatment assignment

and network formation does not matter for the potential outcomes. It is the first part

of the stable unit treatment value assumption (SUTVA) (Rubin, 1986) often made in the

potential outcomes approach to causal inference. In addition, SUTVA assumes away the

5We use bold uppercase letters to represent random vectors and matrices, bold lowercase letters their

corresponding realizations.
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Figure 2: Potential Outcomes with Different Networks

Note: Blue nodes denote units under treatment, and grey nodes denote units under control.

interference among units, i.e., the treatment assigned to unit i does not affect the potential

outcome of unit j: Yi(d,w) = Yi(d
′,w′) if di = d′i. In this case, we can simplify the

potential outcome as Yi(d,w) = Yi(di).

Example 2: Exogenous networks.

The assumption of no interference is quite strong and is often violated when we make

causal inference with network data. To relax this assumption, scholars have proposed

design-based as well as model-based approaches to causal inference under interference with

experimental and observational data (e.g., Aronow and Samii (2017); Forastiere et al.

(2021)). In their work, they assume that the potential outcomes for each unit is determined

by the whole treatment assignment vector, i.e., Yi(d,w) = Yi(d
′,w′) if d = d′. Therefore,

the network W is often regarded as “fixed” and used to define the structure of interference

among units. In this case, we can simplify the potential outcome as Yi(d,w) = Yi(d).

Example 3: Networks as treatment assignment.

In some cases, an endogenous network itself can be regarded as treatment assignment.

For example, changes in the network, like degree for each node, may affect potential out-

comes (Toulis et al., 2021). In fact, network summary statistics are sometimes the key

independent variables in political science studies. For example, Kinne (2012) studies the
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effect of a country’s position in global trade network on conflicts. In this case, we can

simplify the potential outcome as Yi(d,w) = Yi(W ). Since W is common for all units,

therefore treatment assignments are interdependent 6 .

Given the notations above, a system of models for network formation, treatment as-

signment and behavioral outcomes is represented as follows:

Wij = gw(i, j,X, ϵwij)

Di = gd(i,X, ϵdi )

Yi(D,W ) = gy(i,D,W ,X, ϵyi )

(1)

where ϵwij, ϵ
d
i and ϵ

y
i are vector (or matrix) of random errors. The correlation between ϵwij and

ϵdi characterizes interactions between network formation and treatment assignment. When

the network is undirected and link formation between pair of units depends only on pairwise

covariates, the network formation model can be simplified as Wij = gw(Xi, Xj, ϵ
w
ij). It is

worth noting that the covariate matrix X for all units may determine treatment adoption

and behavioral outcome for each unit i. In Equation (1), X can be written as (Xi,X−i),

where X−i is named contextual variable in the literature of network analysis (Jackson et al.,

2022). By incorporating such variables in gd and gy, researchers consider the influence

of social norm on each unit’s action on treatment adoption and behavioral outcome. If

researchers have strong prior belief that such influence does not exist, the models can be

simplified as Di = gd(Xi, ϵ
d
i ) and Yi(D,W ) = gy(D,W , Xi, ϵ

y
i ).

When the treatment vector and network jointly determine the potential outcomes, the

“essential” treatment assignment is high-dimensional, which makes the identification and

estimation of treatment effects a challenging task. Following existing literature, I assume

that there exists a low-dimensional, and possibly vector-valued, function of the original

treatment vector and network that represents the potential outcomes.

Assumption 1: Exposure mapping: There exists a known function g : N×D×W → T ,

such that

Yi(d,w) = Yi(ti)

if g(i,d,w) = ti
7. Therefore, we have Yi(d,w) = Yi(d

′,w′) if g(i,d,w) = g(i,d′,w′).

6Problems of using network measures as covariates in linear regression are discussed in Cai (2022).
7The potential outcome with exposure mapping is denoted as Yi(d,w) = Ỹi(ti) in Leung and Loupos
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In the literature of casual inference under interference, Ti = g(i,D,W ) is called “expo-

sure mapping” (Aronow and Samii, 2017) or “effective treatment” (Manski, 2013). Ex-

posure mapping has been adopted by methodological research on interference (Forastiere

et al., 2021) as well as empirical research on spillover effect (Arpino and Mattei, 2016).

In these papers, the authors assume that W is fixed and part of the exposure mapping

function that defines the interference structure. In this paper, I regard W as an input

like D for gi. Therefore, W and D jointly determine the effective treatment for each

unit. Specifically, the treatment assignment vector D and the network W are common

inputs for all units under study, while the output of the exposure mapping or effective

treatment is unit-heterogeneous. Note that the specification of exposure mapping needs

substantial knowledge on the treatment of interest. Here are some examples. When there

is no interference, we have Ti = g(i,D,W ) = Di. For a binary treatment indicator,

the range of Ti is T = {0, 1}. For exogenous network, if the potential outcome for each

unit is determined by its own treatment status as well as the number of treated neigh-

bors (defined by connections on the network) , we have a vector-valued exposure mapping

Ti = g(i,D,W ) = (Di,
∑

j WijDj). For endogenous network, if treatment is defined as

out-degree, we have Ti = g(i,D,W ) =
∑

j Wij. While its functional form can be flexible,

that it is known is a rather strong assumption. Mis-specification of exposure mapping has

been an emerging research topic (Sävje, 2023), which is beyond the scope of this paper.

3.3 Causal quantities of interest

For binary treatment indicator, there are two potential outcomes, and the causal estimands

are well-defined. For example, the average treatment effect (ATE) is defined as ATE =

E(Yi(1) − Yi(0)), and we have average treatment effect on the treated (ATT) or control

(ATC) defined on subgroups. In network data, the exposure mapping is multi-valued, and

can be continuous and high-dimensional. We define the average potential outcome at a

given level of exposure mapping t as:

µ(t) = E(Yi(t))

(2022). For notational consistency, I keep using Yi(·) for potential outcomes throughout this papaer.
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The average potential outcome is also called the average dose-response function (ADRF),

a concept in medical statistics and recently adopted in the casual inference literature to

describe the relation between an outcome of interest and a continuous treatment. In the

rest of this paper, we use ADRF to represent the average potential outcomes. For binary

treatment, we have µ(1) = E(Yi(1)) and µ(0) = E(Yi(0)), and it is straightforward that

ATE = µ(1)−µ(0). For network data, we define the treatment effect of exposure mapping

at level t compared to level t′ as:

τ(t, t′) = E(Yi(t)− Yi(t
′)) = µ(t)− µ(t′) (2)

While simple in its form, the treatment effect in Equation (2) may have rich meanings

given researchers’ choices of the exposure mapping. For example, a researcher is inter-

ested in estimating direct and spillover effects of a treatment, and defines g(i,d,w) =

(di,
∑

j wijDj) = (di, zi). For binary treatment and weighted matrix (0 ≤ wij ≤ 1 and∑
j wij = 1), we have di ∈ {0, 1} and zi ∈ [0, 1]. In this case, the ADRF becomes

µ(d, z) = E[Yi(d, z)], d ∈ {0, 1}, z ∈ [0, 1]

Following existing literature on interference and spillover effect, researchers may be inter-

ested in multiple causal estimands. First, the conditional direct effect is defined as:

τ(z) = E[Yi(1, z)− Yi(0, z)] = µ(1, z)− µ(0, z)

and the marginal direct effect is defined by averaging τ(z) over the probability distribution

of z. that is

τ =

∫
τ(z)fZ(z)dz

where fZ(z) is the probability density of Z. Next, the conditional spillover effect is defined

as:

δ(z, z′, d) = E[Yi(d, z)− Yi(d, z
′)] = µ(d, z)− µ(d, z′)

which is the difference between ADRF when we fix the value of individual treatment (d)

and compare two alternative values z and z′. When z′ is some benchmark value, e.g.,

z′ = 0, we can simplify the notation by dropping z′ in the equation and denote δ(z, d) =

µ(d, z)− µ(d, 0). The marginal spillover effect is defined as

δ(d) =

∫
δ(z, d)fZ(z)dz

12



Finally, the overall (total) effect is defined as the sum of direct and spillover effects:

TE(z) = E[Yi(1, z)− Yi(0, 0)]

= µ(1, z)− µ(0, 0)

= (µ(1, z)− µ(0, z)) + (µ(0, z)− µ(0, 0))

= τ(z) + δ(z, 0)

Similarly, we define the marginal total effect as follows:

TE =

∫
TE(z)fZ(z)dz = τ + δ(0)

3.4 Unconfoundedness of the treatment assignment and network

formation

Since casual estimands are differences in the ADRF (average potential outcomes), their

identification relies on the identification of ARDF. When SUTVA holds, identification

results are based on the conditional unconfoundedness (ignorability) assumption:

{Yi(0), Yi(1)} ⊥⊥ Di|Xi. It states that, conditional on the observed confounders Xi, the

potential outcomes are independent of the observed treatment assignment. This assumption

focuses on the unconfoundedness of individual treatment. For network data, potential

outcomes are determined by the exposure mapping, a function of both the whole treatment

assignment vector and the social network, and the assumption must be restated to account

for confounders that affect treatment assignment or (and) network formation, and potential

outcomes.

Existing literature has made several alternative assumptions for identification of treat-

ment effects from network data. When the network is fixed and exogenous, Forastiere et al.

(2021) show that under the following condition:

{Yi(·)} ⊥⊥ Ti|Si (3)

treatment effect can be identified, provided that there is no diffusion of treatment adoption.

In Equation (3), Si includes individual level covariates Xi as well as “network controls” like

the contextual effects (or exogenous network influence)
∑

j WijXj/
∑

j Wij and network

measures like degree and centrality. If this condition holds, researchers can adopt the
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conventional propensity-score based methods by first specifying a probabilistic model for

treatment assignment. While the assumption of unconfoundedness is weaker and easy

to implement in practice, it ignores peer effect in treatment adoption. To incorporate

treatment diffusion, Leung and Loupos (2022) consider a high-dimensional condition of

unconfoundedness that incorporates Equation (3) as a special case 8:

{Yi(·)} ⊥⊥ D|X,W (4)

In Equation (7), the effect of X−i on Di is called exogenous network influence. Since

covariates of one unit may affect treatment adoption of others, treatment assignments are

interdependent. Furthermore, in network data, it is also reasonable to assume that units

under study are strategic, i.e., their adoption of treatment depends on whether their peers

adopt treatment. To account for such equilibrial behavior, Jackson et al. (2022) make the

following Societal Conditional Unconfoundedness assumption 9:

{Yi(·)} ⊥⊥ Di|D−i,X,W (5)

Equation (5) is weaker than Equation (7) in that it directly incorporate the influence of

other units’ treatment adoption. In Equation (5), the effect of D−i on Di is called endoge-

nous network influence, which characterizes the equilibrium of treatment assignments in

the social network.

There are a few papers that consider formation of social networks. In a recent paper,

Sanchez-Becerra (2022) derives the condition of unconfoundedenss under relatively strict

assumptions. If the triple (Yi(·), Xi, Di) are drawn from i.i.d. distributions and the forma-

tion of link Wij between unit i and j is undirected and depends on Xi and Xj, then the

condition of unconfoundedenss is10:

{Yi(·)} ⊥⊥ Ti|Xi (6)

8The original assumption made in Leung and Loupos (2022) focuses on treatment assignment: {Yi(·)} ⊥⊥

D|X,W . Given that the network is exogenous, I replace the treatment assignment vector with the exposure

mapping.
9In Jackson et al. (2022), the authors assume that potential outcomes for each unit only depend on

individual treatment status.
10The original setting in Sanchez-Becerra (2022) contains multiple separate networks. Here we consider

only one network for notaional consistency.
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This is because, a priori, link formation between any pair of units is randomized and there

is no treatment diffusion. While easy to implement, in observational data, there can be rich

dynamics between treatment assignment and network formation. For example, treatment

may cause the formation of network (D → W ), network may induce the diffusion of treat-

ment (W → D), and treatment assignment and network formation can be interdependent

(D ↔ W ). In these scenarios, the unconfoundedness condition in Equation (6) is less

sufficient. To account for network formation, treatment diffusion and their interaction, I

make the following assumption:

Assumption 2: Unconfoundedness of treatment assignment and network formation:

Yi(g(i,d
′,W ′)) ⊥⊥ D,W |X ∀i ∈ N ,d ∈ D,W ′ ∈ W

This assumption states that, conditional on the observed covariates matrix X, the poten-

tial outcomes for each unit are independent of the treatment assignment vector and the

observed social network. It differs from the classical unconfoundedness assumption in that

we condition on the observed covariates for all units X rather than the individual covari-

ates Xi. This is because the covariate matrix XD determines assignment of the treatment

vector D while XW determines the formation of the network W . If they also affects

the potential outcomes, then XD and XW confound the relation between D, W and the

potential outcomes. Given our definition of exposure mapping, equivalently, we have

{Yi(·)} ⊥⊥ Ti|X, ∀i (7)

Under this assumption, the assignment mechanism can be represented by a probabilistic

model p(D,W ;X). It is rather general since we don’t consider the relation between D

and W . Instead, we regard them together as “joint assignment”. To simplify the modeling

of the assignment mechanism, I make an additional assumption to model the assignment

of treatment vector p(D;X) and the formation of network p(W ;X) separately. Formally,

I assume that the treatment vector and network formation are conditionally independent

given the observed covariates X.

Remark 1. The assumptions above explicitly account for the endogeneity of social

network that induces neighborhood treatments for the identification of ADRF. While they

are weaker than SUTVA and assumptions made in some existing approaches to causal
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inference under interference that regard the network as fixed, they can be quite strong and

are violated when there exists unobserved confounder. In section 5, I extend the estimation

strategy to incorporate unobserved confounders by directly modeling it. Alternatively,

researchers can conduct a sensitivity analysis for the existence of unobserved confounders.

Remark 2. Linear models are popular for estimating spillover effects. However, in

the presence of endogenous network, model-based approach may not be sufficient to adjust

for confounding due to network formation.For example, researchers can fit the following

regression model:

Yi = α + τDi + γ
∑
j

WijDj +X ′
iβ + ei (8)

Based on this model, we can recover causal quantities of interest from the parameters τ and

γ. For the conditional direct effect, it equals τ(z) = τ∀z. And for the conditional spillover

effect, it equals δ(z, z′, d) = γ(z− z′). While the model is easy to implement and interpret,

in addition to model mis-specification, individual covariate Xi may not be sufficient to

adjust for confounding between
∑

j WijDj and Yi, and thus the estimated spillover effect

is biased.

4 A Generalized Propensity Score Approach

The propensity score is defined as the conditional probability of receiving a treatment level

given observed confounders (Rosenbaum and Rubin, 1983). Under SUTVA, treatment

assignments are individualized, and propensity score can be estimated with parametric

models. For binary treatment indicator, the propensity score is usually modeled as a Logit

or Probit model. More generally, we can have multinomial logit or normal linear models for

the estimation of generalized propensity scores for multi-valued and continuous treatment

(Hirano and Imbens, 2004).

While the condition of unconfoundedness above is weaker than those made in most

existing research on interference and allows for rich interactions between treatment as-

signment and network formation, in practice, it can be difficult to estimate the ARDF by

conditioning on the observed covariate matrix X for all units especially when the number

of covariates is large. This paper contributes to the literature by extending the propensity

16



score based method to identify and estimate treatment effects in the presence of endogenous

networks. Unlike existing approaches (Sanchez-Becerra, 2022; Forastiere et al., 2021) that

assume conditional independence of (or exchangeable) treatment assignment, it is more

plausible that exposure mapping assigned to each unit is interdependent, because inputs

of the function are treatment assignment vector and the network, which are common to

all units. Therefore, we can not directly assume a parametric model for exposure mapping

and then estimate the propensity score. Rather, we fit a model for treatment assignment

given XD and a network formation model given XW . Given these two probabilistic models

and the exposure mapping function, we implicitly estimate the propensity score for each

level of exposure mapping for each unit. Since the exposure mapping Ti = g(i,D,W ) is

multi-valued or continuous, we follow the existing literature (Imbens, 2000) and name the

propensity score for each level “generalized propensity score”. Note that my approach is

semi-parametric in that I do not assume an explicit model for the exposure mapping.

4.1 Generalized propensity score for exposure mapping

I define the generalized propensity score (gps) for unit i as the probability distribution of

exposure mapping for unit i, given the observed covariate matrix x:

r(i, t;x) = Pr(Ti = t|X = x) = Pr(g(i,D,W ) = t|X = x) (9)

where r(i, t;x) is the probability that the exposure mapping for unit i takes value of t given

the observed covariate matrix. The definition is similar to the (ordinal) propensity score

for a binary treatment indicator, which is formulated as:

ψ(xi) = Pr(Di = 1|Xi = xi)

which represents the probability that the treatment assigned to unit i equal to 1. Note

that the propensity score ψ(xi) for binary treatment indicator is individualized in that it

only condition on unit i’s own covariates (or confounders), and the differences in propensity

scores across units come from the differences in individual covariates xi. For the generalized

propensity score r(i, t;x) in network setting, the input x is common for all units, and we

use the label r(i, ·; ·) to denote unit-level heterogeneity. Like the propensity score for binary
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treatment indicator, we assume positivity of the generalized propensity score for exposure

mapping.

Assumption 3: Positivity of the generalized propensity score for exposure mapping:

0 < r(i, t;x) < 1, ∀i ∈ N , t ∈ T (10)

where T denotes all possible values that the exposure mapping may take.

4.2 Joint modeling of treatment assignment and network forma-

tion

As in our discussion of the unconfoundedness condition in Equation (7), it is weaker than

the unconfoundedness condition at individual level in Equation (3) and can incorporate

rich interactions between treatment assignment and network formation, but conditioning

on the whole covariate matrix makes the estimation of propensity score a challenging task,

especially when the number of covariate is large. For Equation (3) it is possible to assume

an explicit probabilistic model for exposure mapping, but for Equation (7) the estimation

problem is high-dimensional and much trickier. Leung and Loupos (2022) propose a graph

neural network (GNN) based estimator for such propensity scores conditional on the whole

covariate matrix. In their paper, the network is assumed to be exogeneous, and they

estimate the probability for exposure mapping conditional on the covariate matrix and the

observed exogeneous network, i.e., Pr(Ti = t|X,W ). Becasue the estimation problem

is high-dimensional, they assume that Pr(Ti = t|X,W ) = Pr(Ti = t|XN (i,L),WN (i,L)),

where L is the depth, or number of layers, of the graph neural network, a key parameter

that determines the receptive field (XN (i,L),WN (i,L))) used to predict unit i’s outcome. In

the terminology of network analysis, N (i, L) is the set of unit i’s up to Lth order neighbors.

If L = 1, only units who share a common link with unit i are included, i.e., N (i, L) =

{j : Wij ̸= 0}. When W is endogenous, the network as an input of the exposure mapping

itself should be regarded as a “treatment”, and conditioning on it may cause selection

bias. Besides, since we assume XD determines the assignment of treatment D and XW

determines the formation of network W , and neither XD nor XW directly determines

the exposure mapping Ti. Therefore, I propose an alternative approach to estimating
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generalized propensity score r(i, t;x) by modeling the assignment mechanism for treatment

D and the formation of network W . Suppose fD,W |X(d,w|x) is the joint distribution of D

and W conditional on the covariate matrix X, the generalized propensity score of exposure

mapping for unit i is formulated as:

r(i, t;x) = Pr(g(i,D,W ) = t|X = x)

=

∫
D∈D

∫
W∈W

1{g(i,d,w) = t}fD,W |X(d,w|x) dd dw
(11)

Therefore, if we can properly model the joint distribution of the treatment assignment D

and the social network W given the covariate matrix X, the generalized propensity score

of the exposure mapping equals the integral over the sample spaces D and W such that a

pair (d′,w′), d′ ∈ D and w′ ∈ W , satisfies g(i,d′,w′) = t.

4.3 Factorization of treatment assignment and network forma-

tion

we face two challenges when estimating propensity scores of exposure mapping for social

network data. First, the exposure mapping for each unit depends on the whole treatment

vector and the network, i.e., treatment values are entangled. Second, the network itself is

endogenous. As we discussed above, we need to condition on the whole covariate matrix

X rather than individual covariate vector Xi, and direct estimation of the generalized

propensity score can be difficult. I consider modeling the joint distribution of D and W

and the generalized propensity score of the exposure mapping equals the integral over the

sample spaces that satisfy g(i,d,w) = t for each i. However, modeling the joint distribution

of D and W is also challenging, especially for observational data where there may be rich

interactions between treatment assignment and network formation. Treatment assignment

and network formation are two processes. The simplest case is that these two processes are

independent given the observed covariate X, and there may be more complex dynamics.

In the long term, they may mutually affect each other and achieve an equilibrium, which

is called simultaneity in econometrics literature. On the other hand, if we observe the

data generating process for a relatively short period, it is possible that network formation

precedes treatment assignment, and even induces diffusion of treatment adoption. It is also
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possible that treatments assigned to a pair of units affect the tie formation process between

them.

Jointly modeling the distribution of D and W incorporates complex dynamics between

them, but in practice it is not straightforward to specify a probabilistic model for treatment

assignment together with network formation. We consider a factorization of their joint

distribution to simplify modeling without ignoring the interaction between D and W .

Wij

Di

Dj

Xi

Xj

Wij

Di

Dj

Xi

Xj

Common Exposure Treatment Diffusion

Wij

Di

Dj

Xi

Xj

Wij
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Dj

Xi

Xj

Network Formation Simultaneity

Figure 3: Factorization of Treatment Assignment and Network Formation

I start with the baseline case, i.e., D and W are independent conditional on X:

D ⊥⊥ W |X (12)

Under this assumption, the joint distribution fD,W |X(d,w|x) can be factorized as:

fD,W |X(d,w|x) = fD|X(d|x)fW |X(w|x) = fD|XD(d|xD)fW |XW (w|xW ) (13)

when treatment assignment is individualized, treatment assigned to each unit is indepen-

dent, and we have fD|XD(d|xD) =
∏N

i=1 fDi|XD
i
(di|xi). Under this factorization, researchers

can separately fit probabilistic models for treatment assignment and network formation.
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However, it assumes that the observed covariate matrix X contains all information, and

there are no unobserved confounders or homophily. This factorization is called “common

exposure” in Franzese and Hays (2008). Note that this assumption is quite strong and

implausible when unobserved covaraite affect both treatment assignment and network for-

mation, i.e., simultaneity. When researchers observed data for long periods, it is possible

that treatment assignment and network formation are mutually interdependent, and we

consider the following factorization:

fD,W |X(d,w|x) =
∫
fD,W |X,U (d,w|x,u)fU |X(u|x) du

=

∫
fD|X,U (d|x,u)fW |X,U (w|x,u)fU |X(u|x) du

=

∫
fD|XD,U (d|xD,u)fW |XW ,U (w|xW ,u)fU |X(u|x) du

(14)

where U = (U1, . . . ,UN) is a vector of unobserved covariates and fU |X(u|x) is its distri-

bution conditional on X. When U and X are independent, we have fU |X(u|x) = fU (u).

Given this factorization, we essentially assume:

D ⊥⊥ W |X,U (15)

like the latent ignorability assumption in causal inference literature (Frangakis and Rubin,

1999). It states that, conditional on observed covariates X and unobserved covariates U ,

treatment assignment and network formation are independent. In structural econometrics,

the control function approach is proposed to jointly model the distribution of D and W

accounting for unobserved U .

Finally, since treatment assignment and network formation are two processes, it is possi-

ble that one precedes the other and intervenes the latter. While determining the sequential

order depends on the substantial question of interest and researchers’ prior knowledge,

in general we have two types of factorization. If treatment assignment precedes network

formation, we have

fD,W |X(d,w|x) = fD|XD(d|xD)fW |XW ,D(w|xW ,d)

If network formation induces diffusion of treatment adoption, we have

fD,W |X(d,w|x) = fW |XW (w|xW )fD|XD,W (d|xD,w)
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and we can model the diffusion process with the spatial autoregressive (SAR) model ac-

counting for network endogeneity (Goldsmith-Pinkham and Imbens, 2013).

4.4 Establishing the generalized propensity score

Once we model the joint distribution of treatment assignment and network formation, given

the functional form of exposure mapping, we can estimate the generalized propensity score

for each unit. I show that for simple functional forms of exposure mapping, some special

types of network like unweighted networks, and binary treatment indicators, it is possible

to get closed-form expressions for the generalized propensity score. We can also adopt

simulation-based methods for estimation. I show that the generalized propensity score

has the desirable balancing property, i.e., given the propensity score, exposure mapping is

independent of the observed covariate matrix X for each unit.

Suppose we have a binary treatment Di ∈ {0, 1} ∀i, and an unweighted networkWij ∈

{0, 1} ∀i, j. The exposure mapping is defined as Ti = g(i,D,W ) = (Di,
∑

j WijDij), i.e.,

the potential outcome is determined by the unit’s own treatment status and the number of

units under treatment that it shares a common link. For notational convenience, we denote

Ki =
∑

j WijDij and write Ti = (Di, Ki). Suppose treatment assignment is individualized

and D ⊥⊥ W |X, we can formulate the generalized propensity score r(i, t;x) as:

r(i, t;x) = Pr(g(i,D,W ) = (d, k)|x)

= Pr(Di = d|xDi )
∑

∑
j wijdj=k

Pr(D−i = d−i|xD)Pr(W = w|xW )

= Pr(Di = d|xDi )
∑

∑
j wijdj=k

∏
j ̸=i

Pr(Dj = dj|xDi )Pr(W = w|xW )

(16)

The factorization above shows a closed-form formula for r(i, t;x) under constraints on treat-

ment indicator, types of network and functional form of exposure mapping. It essentially is

a synthesis of the probabilistic models of treatment assignment fD|XD(d|xD) and network

formation fW |XW (w|xW ). For complicated scenarios, like continuous treatment, weighted

networks and complex functional form of exposure mapping incorporating influences from

higher order neighbors, it is difficult to get close-form expression for generalized propensity

scores, and we need to adopt simulation-based methods (Aronow and Samii, 2017; Toulis
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et al., 2021). Details of simulation-based methods for estimating generalized propensity

scores are introduced in the next section.

Given the definitions of the generalized propensity score r(i, t;x), under the assumptions

above, we have the following propositions:

Proposition 1: Balancing property of the generalized propensity score:

Pr(Ti = t|x, r(i, t;x)) = Pr(Ti = t|r(i, t;x))

Proposition 2: Conditional unconfoundedness given the generalized propensity score:

{Yi(·)} ⊥⊥ T |r(i, t;x)

In the next section, I introduce how to use the generalized propensity score derived

above to identify and estimate the average dose-response function (ADRF) as well as the

treatment effects.

5 Estimation and Inference

In the previous section, I introduce the generalized propensity score r(i, t;x) of the exposure

mapping and its estimation based on modeling the joint distribution of treatment assign-

ment vector D and the social network W , and we show the balancing property of r(i, t;x).

In this section, I study the identification of average dose-response function (ADRF) and

treatment effects and propose propensity score based estimators. Note that the balancing

property of generalized propensity score implies the identification of ADRF:

Proposition 3: Identification of ADRF:

E{Yi1{Ti = g(i,D,W ) = t}
r(i, t;x)

} = E{Yi(t)} = µ(t) (17)

Since we assume positivity of r(i, t;x), given the estimated generalized propensity score

r̂(i, t;x), we can estimate the ADRF µ(t) without bias with the inverse probability (Horvitz-

Thompson) estimator:

µ̂(t)HT =
N∑
i=1

1{Ti = t} Yi
r̂(i, t;x)

(18)

It is possible that we get extreme values of the Horvitz-Thompson estimates when

r̂(i, t;x) is close to 0, which implies a large value of weight 1/r̂(i, t;x) for that observation.
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Therefore, the Horvitz-Thompson estimator is of high variance. Alternatively, we can

estimate ADRF with the Hajek estimator, which is proved to improve efficiency at the cost

of finite sample bias.

µ̂(t)H =

∑N
i=1 1{Ti = t} Yi

r̂(i,t;x)∑N
i=1 1{Ti = t} 1

r̂(i,t;x)

(19)

The Hajek refinement allows the denominator to vary according to the sum of the weights

( 1
r̂(i,t;x)

), and it improves estimation efficiency by shrinking the magnitude of the estimator

when its value is large, and increasing the magnitude of the estimator when its value is

small.

With a properly-specified outcome model µ(i, T,X,W ), we can also estimate µ(t)

with the augmented inverse probability weighting (AIPW, also known as doubly-robust)

estimator:

µ̂(t)AIPW =
N∑
i=1

1{Ti = t}Yi − µ̂(i, t,x,w)

r̂(i, t;x)
+ µ̂(i, t,x,w) (20)

since x is of high dimension, we can fit µ̂(i, t,x,w) with machine learning models like

random forests. An estimator for treatment effect at exposure mapping level t compared to

level t′ is just the difference between estimated ADRF. Taking the doubly-robust estimator

as an example, we have:

τ̂(t, t′) = µ̂(t)AIPW − µ̂(t′)AIPW (21)

For the rest of the paper, I use the AIPW estimator for treatment effects estimation, and

denote it as “JM-AIPW”.

For inference, provided that the generalized propensity score is consistently estimated,

i.e., r̂(i, t;x)
plim→ r(i, t;x), we can estimate the asymptotic variance with the network HAC

estimator (Kojevnikov et al., 2021). Leung and Loupos (2022) consider a uniform kernel,

and the HAC estimator for µ̂(t)AIPW is written as:

σ̂2
µ̂(t)AIPW =

1

n

N∑
i=1

N∑
j=1

(µ̂(t)AIPW
i − µ̂(t)AIPW )(µ̂(t)AIPW

j − µ̂(t)AIPW )1{ℓW (i, j) ≤ b} (22)

where µ̂(t)AIPW
i = 1{Ti = t}Yi−µ̂(i,t,x,w)

r̂(i,t;x)
+ µ̂(i, t,x,w), b is a pre-specified bandwidth, and

ℓW (i, j) is the shortest path length from i to j (and ℓW (i, j) = ℓW (j, i) for undirected

network). Note that the HAC estimator can also incorporate grouped data as a special

case. In this case, ℓW (i, j) = ∞ if unit i and j belong to different groups. If b is greater
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than or equal to the largest group size, then the HAC estimator equals clustered robust

variance estimator.

5.1 Regression-based estimation and inference for continuous ex-

posure mapping

While we can directly use the inverse probability weighting type estimators (e.g. Horvitz-

Thompson estimator) to estimate the average dose-response function given the estimated

generalized propensity score, it is possible that for a given level of exposure mapping t, we

do not have any observed outcomes. For example, when the treatment assignment D is

continuous or the network W is weighted, i.e., 0 ≤ Wij ≤ 1. Therefore, I follow Forastiere

et al. (2021) and propose a regression-based estimation procedure for the practical imple-

mentation of generalized propensity score based methods to estimate ADRF as well as

treatment effects. The regression-based estimation procedure is proposed by Hirano and

Imbens (2004) to estimate the effect of a single continuous treatment. I briefly introduce

the two-step regression based estimator. Suppose Xi is a vector of observed confounders for

unit i, Ti is a continuous treatment variable, and Yi is the outcome of interest. In the first

step, a parametric model for treatment assignment given observed confounder is estimated.

For continuous Ti, we can assume a linear model:

Ti|Xi ∼ N(β0 + β′
1Xi, σ

2)

And the estimated generalized propensity score equals:

R̂i(Ti;Xi) =
1√
2πσ̂

exp(− 1

2σ̂2
(Ti − β̂0 − β̂′

1Xi)
2)

Given the estimated generalized propensity score, we estimate a parametric model for the

outcome given the generalized propensity score and the treatment. Hirano and Imbens

(2004) consider a quadratic approximation:

E[Yi|Xi, Ri] = α0 + α1Ti + α2T
2
i + α3Ri + α4R

2
i + α5TiRi

An estimator for the average dose-response function Ê(Yi(t)) is:

Ê(Yi(t)) =
1

N

N∑
i=1

(α̂0 + α̂1t+ α̂2t
2 + α̂3r̂i(t;xi) + α̂4r̂i(t;xi)

2 + α̂5tr̂i(t;xi))
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My approach is similar to the two-step estimator above, except that in the first step,

I estimate the generalized propensity score in a semi-parametric way rather than assume

a parametric model. I use the baseline case, i.e., independence of treatment assignment

and network formation given observed covariate matrix, to describe the estimation proce-

dure. Modifications can be made to incorporate simultaneity or sequential orders. First,

I estimate a model for treatment adoption at individual level, which is similar to the con-

ventional propensity score analysis, and a model for network formation. Next, I combine

the two probabilistic models and the functional form of the exposure mapping to estimate

the generalized propensity score for each level of exposure mapping. Finally, an outcome

regression model is estimated with adjustment of the estimated propensity score. Average

dose-response functions are estimated based on the estimated outcome regression model

and estimated generalized propensity score. Detailed steps are illustrated as follows:

Step 1 Fit probabilistic models for individual treatment adoption and network for-

mation given observed covariates XD and XW :

(1) Estimate a probabilistic model D ∼ fD(D;XD, θD) for treatment assign-

ment. For binary treatment indicator, we can estimateDi ∼ Bern(ϕ(1;XD
i ))

with a Probit or Logit model for Di conditional on observed covariates

XD
i .

(2) EstimateW ∼ fW (W ;XW , θW ) with a probabilistic model like the latent

space model.

Step 2 Estimate the generalized propensity score r(i, t;X) of each exposure mapping

level t for each unit given the estimated probabilistic models fD(D;XD, θD)

and fW (W ;XW , θW ). When it is difficult to get closed-form expression, we

consider the following simulation based methods:

(1) For a given large number Ns, we simulate Ns treatment vectors D̃k from

fD(D;XD, θD) and networks W̃ k from fW (W ;XW , θW ) (1 ≤ k ≤ Ns).

(2) For 1 ≤ k ≤ Ns, we get a simulated exposure mapping T̃ k
i = g(i, D̃k, W̃ k)

for each unit. Therefore, we get an empirical distribution of exposure
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mapping for each unit: {T̃ 1
i , . . . , T̃

k
i , . . . , T̃

Ns
i }.

(3) We estimate the probability for a given level t of the exposure mapping

for each unit, based on the empirical distribution {T̃ 1
i , . . . , T̃

k
i , . . . , T̃

Ns
i },

as the estimated generalized propensity score r̂(i, t;x)). When T takes

continuous values, densities can be estimated with kernel density estima-

tors.

Step 3 Given the estimated generalized propensity score, we fit a regression model

for observed outcomes:

Yi(Ti)|r(i, Ti,X) ∼ fY (Y ;Ti, r(i, Ti,X), θY )

Step 4 For a given level t of exposure mapping, an estimator for the average dose-

response function is:

µ̂(t) = Ê(Yi(t)) =
N∑
i=1

Ŷi(t)

where Ŷi(t) is the imputed counterfactual outcome for unit i under exposure

mapping t. The counterfactual outcomes Ŷi(t) are estimated based on the

outcome regression using estimated propensity score r̂(i, t,X).

For uncertainty estimates, we can also apply the network HAC variance estimator as

long as the generalized propensity score is consistently estimated. To account for un-

certainty in propensity score estimation, it is also plausible to adopt modified bootstrap

procedure (Forastiere et al., 2021) or Bayesian inference (Forastiere et al., 2022).

5.2 Extension: incorporating unobserved unit-level heterogene-

ity

When there exists unobserved covariates that affect both treatment assignment and network

formation, we can not separately model the distributions fD|XD(d|xD) and fW |XW (w|xW ).

In this subsection, I illustrate how to model the joint distribution of D and W when there

exists unobserved unit-level heterogeneity. Suppose the assumption of latent independence

holds, i.e., D ⊥⊥ W |X,U . We consider a simple example with binary treatment indicator
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and unweighted social network without directions. Therefore, Di ∈ {0, 1}, Wij ∈ {0, 1}

and Wij = Wji. We assume a Probit model for treatment adoption and latent space model

for network formation:

Di = 1{X ′
iβd + αdUi + εi}

Wij = 1{X ′
ijβw + αw|Ui − Uj|+ eij}

(23)

whereXij is a vector of dyadic covariates for dyad (i, j), which includes observed homophily,

like |Xip −Xjp| for some covariate p, and other measures like geographical approximation.

Ui and Uj represent individual-level unobserved heterogeneity, which are parameters to be

estimated. |Ui−Uj| represents unobserved homophily, with αw the corresponding effect on

the probability of link formation between unit i and j. The following constraints are added

for identification of parameters.

εi ∼ N(0, 1), eij ∼ N(0, 1), Ui ∼ N(0, 1) (24)

which implies

Pr(Di = 1) = Φ(X ′
iβd + αdUi)

Pr(Wij = 1) = Φ(X ′
ijβw + αw|Ui − Uj|)

where Φ(·) is the cumulative distribution function (CDF) for standard normal distribution.

The proposed model is under-identified because Ui is unobserved and we have αdUi =

(−αd)(−Ui) and |Ui − Uj| = |(−Ui) − (−Uj)|. We consider a Bayesian approach to the

system of models in Equation (23) for estimation and inference. Details of the Markov

Chain Monte Carlo (MCMC) algorithm can be found in the appendix.

6 Monte Carlo Studies

In this section, I conduct a series of Monte Carlo studies to investigate finite sample prop-

erty of the proposed generalized propensity score based estimator for estimating treat-

ment effects from observational network data. I consider bias, root mean squared error

(RMSE) and coverage rate of 95% confidence interval as key performance metrics. Differ-

ence between average estimated standard error (SE) and the sampling variation (SD) is

also reported.
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I use clustered data for simulation studies, where each simulated dataset consists of

multiple independent clusters. Units belonging to the same cluster may form link between

each other, but units belonging to different clusters will not be connected. Note that

clustered data can be seen as a special case of a single network, where the probability that

units belonging to different clusters form any links is 0. For a given simulated dataset, I

use c(·) to denote the cluster that each unit belongs to. Thus c(i) = 1 if unit i belongs to

cluster 1. Suppose W is the observed network that specifies connections between units for

this simulated dataset, then if c(i) ̸= c(j), Wij ≡ 0, otherwise Wij ∈ {0, 1}. For notational

convenience, we assume that sizes of clusters are equal. We consider binary treatment

indicator and unweighted network with no directions. The data generating process (DGP)

for treatment assignment and network formation is as follows:

Xi ∼

N(1, 0.52) if i is odd

N(−1, 0.52) if i is even

Wij =

0 if c(i) ̸= c(j)

1{0.1− 0.25|Xi −Xj|+ νi ≥ 0}, νi ∼ N(0, 1) if c(i) = c(j)

Di = 1{0.1 + 0.5Xi + ei ≥ 0}, ei ∼ N(0, 1)

(25)

where cluster c(·) is pre-specified. For each cluster, observed covariates Xi are drawn

from independent but not identical normal distributions. In this case, the assumption

in Sanchez-Becerra (2022) is violated. For simplicity, I assume that cluster size equals

4 and cluster is determined by unit’s id, i.e., unit 1, 2, 3, and 4 belongs to cluster 1,

unit 5, 6, 7, and 8 belongs to cluster 2, and so on. The exposure mapping is defined as

Ti = g(i,D,W ) = (Di,
∑

j WijDj) = (Di, Zi), and obviously Zi ∈ {0, 1, 2, 3}. Therefore,

the exposure mapping Ti may take 8 different levels: (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1),

(1, 2), (1, 3). DGP for the potential outcome is:

Yi(d, z) = 1 +Xi + d+ 0.5z + dz + εi, εi ∼ N(0, 1) (26)

Note that there are multiple quantities of interest (QoI), like the average dose-response

function (ADRF) and treatment effect as differences in ADRF for network data. I focus on

a direct treatment effect, τ((1, 1), (0, 1)) = µ(1, 1)−µ(0, 1), and a spillover treatment effect,
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τ((1, 1), (1, 0)) = µ(1, 1)− µ(1, 0), as quantities of interest. Equation (26) implies constant

treatment effects, i.e., the individual level treatment effect Yi(d, z) − Yi(d̃, z̃) is constant

across units and does not depend on covariate Xi. I also consider an alternative DGP for

potential outcome with heterogeneous treatment effect, and the results are reported in the

appendix. Simulated datasets are generated based on the DGP above with varying sample

sizes. Since the size of cluster is fixed, I generate datasets with differnet number of clusters.

Specifically, I consider the number of clusters equals Nc = 20, 50, 100, 500 and 1000. For

each number of clusters, I conduct 2,000 simulations.

In the simulation setting, since we only have 8 levels of exposure mapping and the

generalized propensity score has a closed-form expression, I use the AIPW estimator in

Equation (20) to estimate treatment effect. For the proposed model, I use the network

HAC variance estimator in Equation (22) to construct 95% confidence interval. Since I

only consider correlation for units within the same cluster, the HAC variance estimator is

equal to the clustered robust variance estimator. Results of Monte Carlo studies for the

two treatment effects are summarized in Table 1 and Table 2.

Table 1: Finite Sample Properties: τ((1, 1), (0, 1))

Nc Bias RMSE Coverage Rate SE - SD
20 0.001 0.426 0.914 −0.045
50 0.001 0.257 0.935 −0.006
100 −0.001 0.177 0.954 0.003
500 −0.001 0.079 0.958 0.003
1000 0.000 0.061 0.933 −0.002

Table 2: Finite Sample Properties: τ((1, 1), (1, 0))

Nc Bias RMSE Coverage Rate SE - SD
20 −0.020 0.369 0.930 −0.020
50 −0.002 0.234 0.939 −0.002
100 0.000 0.169 0.946 −0.004
500 −0.002 0.074 0.954 0.001
1000−0.001 0.052 0.952 0.001

I find that, the proposed model produces small bias even when sample sizes are small.

Meanwhile, bias decreases fast as the number of clusters increases. The decrease is not
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monotone for the spillover effect though. For root mean squared error, it also decreases as

the number of clusters increases, as both bias and sampling variation decrease.

Next, I investigate the properties of the network HAC variance estimator. I find that,

the coverage rate of 95% confidence interval is slightly larger than the nominal rate. There-

fore, the variance estimator is conservative. However, the difference between average es-

timated standard error and sampling variation of the proposed estimator decreases as the

number of clusters increases, indicating that the variance estimator is consistent.

For model comparison, I also fit a regression model and derive the treatment effects

from relevant coefficients. Robust standard errors clustered at group level are calculated.

The adopted regression model is same as Equation (8). Based on this model, estimates

are τ̂ for the direct effect and γ̂ for the indirect effect. Note that the outcome model in

Equation (8) is mis-specified by ignoring the interaction term Di ·
∑

j WijDj. Sampling

distribution of these two estimators are displayed in Figure 4, and bias and RMSE plots

are shown in Figure 5. When the number of clusters is small, the proposed estimator has

bias close to 0, and it decreases quickly as the number of clusters increases. In terms of

RMSE, it also decreases quickly as the number of clusters increases. For the regression

based estimator, it decreases only marginally because of large bias.
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Figure 4: Sampling Distribution with Different Number of Clusters

Additional Monte Carlo studies indicate that properties of the proposed estimator are

robust to heterogeneous treatment effect. Details of the results can be found in appendix.
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Figure 5: Finite Sample Properties: Bias and RMSE

7 Empirical Analysis

To demonstrate its application in empirical social science research, I apply the proposed

method to investigate the effect of U-Bridge on political participation in Uganda. Addition-

ally, I compare this method with regression based approaches, discussing the plausibility

of their underlying assumptions in the empirical setting described in Section 2.

First, consider the scenario where we disregard the network structure, assuming that

the Stable Unit Treatment Value Assumption (SUTVA) holds. Given that resident-level

covariates might influence both the adoption of U-Bridge and political participation, I

employ linear regression models to account for such confounders. Estimation results are

presented in Column (1) of Table 3. I observe a positive and statistically significant effect,

suggesting that adopting U-Bridge increases political participation.

Next, recognizing that residents are inter-connected through various forms of social ties

within each village, we are interested in whether U-Bridge adoption by one resident affects

political participation of other residents. Such spillover effects are conceivable due to the

transmission of information across social networks. Indeed, Sanchez-Becerra (2022) has

identified a notable spillover effect from attending U-Bridge meetings on political partici-

pation. To identify spillover effects, we need to specify the exposure mapping. I assume

g(i,D,W ) = (Di,
∑

j WijDj), meaning that political participation hinges both on a res-
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Table 3: Regression Models for the Effect of U-Bridge on Political Participation

Outcome Variable Political Participation Index (Yi)

Model (1) Model (2) Model (3) Model (4)

Adoption (Di) 0.340*** 0.261*** 0.256*** 0.369***

(0.068) (0.068) (0.064) (0.089)

Spillover (
∑

j WijDj) 0.048*** 0.051*** 0.056***

(0.007) (0.007) (0.007)

Interaction (Di ·
∑

j WijDj) -0.032**

(0.014)

Control Variable (Xi) ✓ ✓ ✓ ✓

Contextual Variable (
∑

j WijXj) ✓ ✓

Village Fixed Effects ✓ ✓ ✓ ✓

Observations 3,018 3,018 3,018 3,018

Notes: Robust standard errors clustered at village level are in the parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

ident’s own adoption of U-Bridge and the number of her connections who have adopted

it. The term
∑

j WijDj is then incorporated as an additional treatment variable in the

regression model, with its coefficient representing the spillover effect. Estimations are de-

tailed in Column (2) of Table 3, revealing a positive and substantial spillover effect. The

coefficient of Di, representing the effect of direct treatment, diminishes, though remains

positive and significant. This diminution is expected if individuals who adopted U-Bridge

tend to have more connections with other adopters, a phenomenon which can be attributed

to homophily, given that spillover effects are positive.

In social networks, covariates of one resident might affect potential outcome of others

due to peer influence (Jackson et al., 2022). Consequently, I introduce contextual variables,

which are average of linked residents’ covariates, to mitigate confounding influence. Lastly,

an interaction term between Di and
∑

j WijDj is added to capture treatment effect hetero-

geneity. The results of these estimations are showcased in Columns (3) and (4) of Table 3.

When incorporating the contextual variables, the coefficient of Di decreases slightly, while

the coefficient of
∑

j WijDj sees a marginal increase. The coefficient of the interaction term

is negative, indicating decreasing effect of Di as
∑

j WijDj increases.

While regression models are flexible and easy to implement, the estimates may be
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biased due to model mis-specification. Moreover, it is hard to interpret the treatment

effect when the social network itself is part of the exposure mapping. As a result, I employ

the generalized propensity score based methods, design-based alternatives that focus on

treatment assignment mechanism and network formation process, to estimate treatment

effects.

While the approaches above consider either network formation process or possible dif-

fusion of treatment adoption by including network controls as confounders, neither can

incorporate these two processes at the same time. Furthermore, they falls short in address-

ing the interaction between treatment assignment and network formation. This oversight

can lead to biased estimations of the generalized propensity score. Besides, probability

of tie formation between pairs of residents may not remain equal after the realization of

resident-level covariates. To address these concerns,

To incorporate the interactions of network formation and treatment assignment, I im-

plement the proposed method. This approach explicitly models both processes, effectively

integrating their interactions. In this empirical setting, it is plausible to believe that the

social network formation process precedes treatment assignment. I fit network formation

models separately for each village to account for village-level heterogeneity like trust and

informal institutions. I fit a Logit model, first line in Equation (27), for the presence of

social tie between a pair of respondents, and control variables are absolute difference in

age, gender, levels of income, secondary education, and proxy measure of care for the com-

munity. These variables represent observed homophily. I also include binary indicators

for whether at least one of them own a phone and whether at least one of them occupy

a leadership role within the village. While the estimated coefficients are heterogeneous

across villages, for most villages the coefficients of absolute differences in respondent-level

covaraites are significantly negative, and the effects of occupying formal leadership role

and owning a phone are significantly positive on social tie formation. Details of estimation

results can be found in the appendix.

For treatment assignment mechanism, the presence of social network could induce the

diffusion of treatment adoption. In fact, Table 4 indicates that treatment assignments

come in clusters. Adopters tend to have links with adopters compared to non-adopters.
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Table 4: Contingency Table for Exposure mapping∑
j WijDj = 0

∑
j WijDj > 0

Di = 0 990 1893

Di = 1 5 130

Thus we need to incorporate peer effects in adoption of U-Bridge. For model fitting, I

fit a Logit model, second line in Equation (27), for adoption of U-Bridge that include

resident-level covariates, contextual variables for peer effects, and village-level fixed effects

(γw,g(i) and γd,g(i)) to control for unobserved village-level heterogeneity. The estimation

results are summarized in column (2) in Table 7. I find that women are less likely to adopt

U-Bridge than men. Additionally, secondary education, formal leadership and owning a

phone have significant positive effects on adoption. The coefficients for some contextual

variables are statistically significant, indicating the existence of peer effects. I simulate

20,000 networks from the network formation model to construct generalized propensity

scores for the exposure mapping (Di,
∑

j WijDj). Clustered robust standard errors at

village level are calculated for each estimation strategy to account for correlation within

each village.

Pr(Wij = 1) = logit−1(|Xi −Xj|′βw1,g(i) +X ′
ijβw2,g(i) + γw,g(i))

Pr(Di = 1) = logit−1(X ′
iβd1 + (

∑
j

WijXj)
′βd2 + γd,g(i))

(27)

I evaluate treatment effect estimates based on these different estimation strategies.

Given that only a small proportion of respondents have adopted the U-Bridge program and

that adoption might be interdependent, certain levels of exposure mapping contain limited

observations. As a result, my analysis primarily concentrates on two direct treatment

effects defined as τd1 = µ(1, 1) − µ(0, 1) and τd2 = µ(1, 2) − µ(0, 2) and two direct effects

τi1 = µ(0, 1) − µ(0, 0) and τi2 = µ(0, 2) − µ(0, 0). For generalized propensity score based

approaches, since the number of observations under these exposure mapping levels can be

small, I use the same regression model with interactions between Di and
∑

j WijDj for

outcomes and implement the doubly robust estimator (AIPW-JM). For regression based

models, I derive the estimates using estimated coefficients for regression based approach.
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For model comparison, I only report the results based on regression models with interactions

(as it is used as the outcome model in the doubly robust estimator). Estimated treatment

effects with 95% confidence intervals based on different model specifications are displayed

in Figure 6.

For the direct effect τ̂d1, both propensity score based approaches and regression model

yield positive and statistically significant estimates, and the magnitudes of estimated effects

are similar. We may conclude that, when residents have connection to one resident that

adopted U-Bridge, the adoption of U-Bridge increased her political participation. Next,

we are interested in whether the direct effect is constant or is it moderated by residents’

connections.

Regarding the direct effect τ̂d2, regression model still yields significant estimates. The

proposed method produces insignificant estimate, though its magnitude is slightly larger.

As previously discussed, regression models might either presuppose a constant effect or

misrepresent the structure of treatment effect heterogeneity.

Based on these estimation results, we can infer that adopting U-Bridge boosts political

participation of a resident, but such effect is not constant and is moderated by the number of

connected adopters. This may be because that residents can learn from connected adopters

about the efficacy of U-Bridge. After acquiring information, they may adjust their own

behaviors, and such adjustment is not monotone increasing with respect to the number of

connected adopters.

For both indirect effects, estimates from regression models are all positive and statisti-

cally significant. However, the estimates may be biased due to model mis-specification. For

the proposed method, the indirect effect τ̂i1 is positive and significant, though its magnitude

is smaller than those from regression model. For indirect effect τ̂i2, it is of smaller mag-

nitude and statistically insignificant. Given that proposed estimator has relatively large

sampling variation, we may conclude that the adoption of U-Bridge has positive spillover

effect. If a resident is connected to other adopters, she may also be more active in political

participation. However, the spillover effect may not be constant or monotone increasing

with respect to the number of adopters. The discrepancy between propensity score based

approach and regression model might arise from neglecting the network formation process
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and diffusion of treatment adoption induced by social network.

In summary, when estimating treatment effects from social network data, researchers

should consider the network formation process, treatment assignment mechanisms, and po-

tential interactions between these processes. Only then can they select the most appropriate

estimation strategy for their specific empirical setting.
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Figure 6: Estimated Effects of U-Bridge Adoption on Political Participation

Note: The left panel shows estimated direct effects and the right panel shows estimated indirect effects

based on different approaches. Abbreviations “AIPW-JM” represents the proposed method.

8 Conclusion

In this paper, I propose a generalized propensity score based approach to identification and

estimation of treatment effects from observational social network data. In such data, treat-

ment assigned to one unit may affect potential outcome of other units. Meanwhile, there

may be some covariates that determines adoption of the treatment, formation of social ties

and observed behavioral outcomes, making identification and estimation a challenging task.

To incorporate the rich interactions between treatment assignment and network formation

process, I propose to jointly model these two processes. Given a known functional form
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of exposure mapping that determines the effective treatment level, generalized propensity

score for each treatment level is semi-parametrically estimated based on the probabilistic

models for treatment assignment and network formation. An estimate of average potential

outcome and treatment effect is obtained by implementing inverse probability weighting es-

timators. I investigate its performance and finite sample properties in several Monte Carlo

studies and illustrate its applicability in an empirical application on the effect of adoption

of a new political communication technology on political participation.

While the proposed method can incorporate different types of treatment variables and

networks and complex interactions between them in observational data, it has several lim-

itations too. First, I still make strong assumption on the parametric form of treatment as-

signment mechanism, network formation process, and exposure mapping. Mis-specification

of them may cause bias in estimation. Second, the approach is more computationally inten-

sive than some existing approaches that directly estimate the generalized propensity scores

via parametric models, which limits its practical applicability to relatively small datasets.

Finally, the proposed method aims at cross-sectional data where the network is random but

static. Addressing the interactions and feedback among treatment assignment, network dy-

namics and behavioral outcomes is important for causal inference with longitudinal social

network data and worth exploring in future research.
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SUPPLEMENTARY MATERIAL

A Proofs

Proof for proposition 1:

Pr(Ti = t|X, r(i, t;X))

=E[1{g(i,D,W ) = t}|X, r(i, t;X)]

=E[1{g(i,D,W ) = t}|X]

=Pr(Ti = t|X)

=r(i, t;X)

(28)

We also have

Pr(Ti = t|r(i, t;X))

=E[1{g(i,D,W ) = t}|r(i, t;X)]

=E[E[1{g(i,D,W ) = t}|X]r(i, t;X)]

=E[r(i, t;X)|X]

=r(i, t;X)

(29)

Therefore, we have Pr(Ti = t|X, r(i, t;X)) = Pr(Ti = t|r(i, t;X)).

Proof for proposition 2:

Pr(Ti = t|Yi(·)r(i, t;X))

=E[1{g(i,D,W ) = t}|Yi(·), r(i, t;X)]

=E[E[1{g(i,D,W ) = t}|X, Yi(·), r(i, t;X)]Yi(·), r(i, t;X)]

=E[E[1{g(i,D,W ) = t}|X, Yi(·)]Yi(·), r(i, t;X)]

=E[E[1{g(i,D,W ) = t}|X]Yi(·), r(i, t;X)]

=E[r(i, t;X)|Yi(·), r(i, t;X)]

=r(i, t;X)

(30)

Proof for proposition 3:
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E{Yi1{Ti = g(i,D,W ) = t}
r(i, t;X)

}

=E{E{Yi1{Ti = g(i,D,W ) = t}
r(i, t;X)

|X}}

=E{E{ Yi
r(i, t;X)

|Ti = t,X}Pr(Ti = t|X)}

=E{E{ Yi
r(i, t;X)

|Ti = t,X}r(i, t;X)}

=E{E{Yi|Ti = t,X}}

=E{E{Yi(t)|X}}

=E{Yi(t)}

=µ(t)

(31)

B MCMC Algorithm for Modeling Unobserved Het-

erogeneity

Denote Ξ = (ξ1, . . . , ξN), the parameters to be estimated are Θ = {βd, βw, αd, αw,Ξ}. The

likelihood function is written as:

L(D,W |Θ) =
N∏
i=1

Pr(Di = 1)Di(1− Pr(Di = 1))1−Di

∏
1≤i<j≤N

Pr(Wij = 1)Wij(1− Pr(Wij) = 1)1−Wij

=
N∏
i=1

Φ(X ′
iβd + αdξi)

Di(1− Φ(X ′
iβd + αdξi))

1−Di

×
∏

1≤i<j≤N

Φ(X ′
ijβw + αw|ξi − ξj|)Wij(1− Φ(X ′

ijβw + αw|ξi − ξj|))1−Wij

We assign priors to the remaining parameters:

βd ∼ N(β0
d , B0), βw ∼ N(β0

w, C0), αd ∼ N(α0
d, σ

2
d), αw ∼ N(α0

w, σ
2
w)

By Bayes rule, we have

p(Θ|D,W ) ∝ L(D,W |Θ)P (Θ)

For simulation, we use Gibbs sampler for the conditional posteriors for (βd, αd) and

(βw, αw) given the data and other parameters. Besides, we use Metropolis-Hastings steps

(random walk Metropolis) to update each ξi separately.
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The MCMC steps are summarized as follows:

1. Draw latent outcomes D∗
i and W ∗

ij given the parameters:

D∗
i ∼

TN[0,∞)(µ
d
i , 1) ifDi = 1

TN(−∞,0)(µ
d
i , 1) ifDi = 0

W ∗
ij ∼

TN[0,∞)(µ
w
ij, 1) ifWij = 1

TN(−∞,0)(µ
w
ij, 1) ifWij = 0

where udi = X ′
iβd + αdξi and u

w
ij = X ′

ijβw + αw|ξi − ξj|. TN(a,b)(µ, ν) means normal

distribution with mean µ and variance ν truncated to the interval (a, b).

2. Jointly draw (βd, αd): denote X̃i = (Xi, ξi)

β̃d ∼ N(β̃1, B̃1)

B̃1 = [X̃ ′X̃ + B̃−1
0 ]−1

β̃1
d = B̃1[X̃

′D∗ + B̃−1
0 β̃0

d ]

3. Jointly draw (βw, αq): denote X̃ij = (Xij, |ξi − ξj|)

β̃w ∼ N(β̃1
w, C̃1)

C̃1 = [X̃ ′X̃ + C̃−1
0 ]−1

β̃1
w = C̃1[X̃

′W ∗ + C̃−1
0 β̃0

w]

4. Separately draw ξi: We first draw a proposal from

ξ∗i ∼ N(ξ
(h−1)
i , σ2

α)

and then accept ξhi = ξ∗i with probability min{1, ψ} where

ψ =
Φ(X ′

iβd + αdξ
∗
i )

Di(1− Φ(X ′
iβd + αdξ

∗
i ))

1−Di

Φ(X ′
iβd + αdξ

(h−1)
i )Di(1− Φ(X ′

iβd + αdξ
(h−1)
i ))1−Di

×
∏

1≤i<j≤N Φ(X ′
ijβw + αw|ξ∗i − ξj|)Wij(1− Φ(X ′

ijβw + αw|ξ∗i − ξj|))1−Wij∏
1≤i<j≤N Φ(X ′

ijβw + αw|ξ(h−1)
i − ξj|)Wij(1− Φ(X ′

ijβw + αw|ξ(h−1)
i − ξj|))1−Wij

× ϕ(ξ∗i )

ϕ(ξ
(h−1)
i )
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C Additional results for Monte Carlo Studies

To investigate whether the proposed method is robust to heterogeneous treatment effects

(HTE), I consider an alternative data generating process for the potential outcome:

Yi(d, z) = 1 +Xi + d+ 0.5z + dz +Xidz + εi, εi ∼ N(0, 1) (32)

Therefore, the individual level treatment effect Yi(d, z)− Yi(d̃, z̃) depends on the covariate

Xi. Results for both treatment effects are summarized in Table 5 and Table 6. I find

that the results are quite similar to the case of constant treatment effect. Therefore, the

proposed method performs well even when treatment effects are heterogeneous.

Table 5: Finite Sample Properties (HTE): τ((1, 1), (0, 1))

Nc Bias RMSE Coverage Rate SE - SD
20 0.048 1.213 0.972 0.082
50 −0.003 0.726 0.978 0.119
100 0.010 0.514 0.982 0.082
500 −0.001 0.223 0.981 0.048
1000 0.002 0.164 0.983 0.030

Table 6: Finite Sample Properties (HTE): τ((1, 1), (1, 0))

Nc Bias RMSE Coverage Rate SE - SD
20 0.037 1.213 0.947 0.079
50 0.001 0.732 0.970 0.091
100 0.009 0.536 0.964 0.047
500 −0.007 0.235 0.973 0.026
1000 0.003 0.163 0.975 0.022

D Additional Results and Plots for the Empirical Ap-

plication

This section includes additional results and plots for the empirical application. Figure 7 and

Figure 8 display network structures for the rest 15 villages in the data sample. Residents

who adopted the U-Bridge program are highlighted in blue and Residents who occupy
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a formal leader role within village are highlighted in red. Figure 9 and Figure 10 show

estimated coefficients with 95% confidence intervals in the network formation models across

the 16 villages under study.

Table 7: Estimation Results for Treatment Assignment Mechanism

Treatment Variable Individual Adoption of U-Bridge Program (Di)

AIPW-JM

Age -0.002

(0.010)

Female -1.524***

(0.347)

Income 0.018

(0.073)

Education 1.911***

(0.191)

Leader 0.775***

(0.244)

Care Community -1.030*

(0.528)

Has Phone 1.230***

(0.352)

Contextual Age -0.029***

(0.015)

Contextual Female 1.439***

(0.466)

Contextual Income -0.419

(0.287)

Contextual Education 1.177**

(0.471)

Contextual Leader -0.205

(0.533)

Contextual Care Community -4.611**

(1.798)

Contextual Has Phone 0.098

(0.570)

Village Fixed Effects ✓

Notes: Robust standard errors clustered at village level are in the parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Contextual variables mean average value of villagers with common links, i.e.,
∑

j WijXj/
∑

j Wij for each villager i.
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