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Abstract
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cation and estimation of treatment effects from observational network data, wherein
formation of social link between a pair of units depends on individual level char-
acteristics. Ignoring the tie formation process, its interaction with the treatment
assignment mechanism, and interference induced by the social network may lead to
biased estimation of treatment effects. We propose a unified framework that addresses
these challenges by jointly modeling treatment assignment and network formation.
Generalized propensity score can be estimated given probabilistic models for these
two processes and functional form defining effective treatment. Average potential
outcomes and treatment effects are estimated with inverse probability weighting es-
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technology on political participation in Uganda.
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1 Introduction

Causal inference with network data has emerged as a vibrant topic in both empirical social

science studies and methodological research, as units under study are inter-connected at

micro or macro level in many scenarios. In behavioral studies, individuals might establish

social ties, like family members, friendships, based on shared characteristics like age or

educational background (e.g., Sinclair et al., 2012). For cross-country analyses, connec-

tions between countries can be assessed by geographical proximity or bilateral metrics such

as trade volume and joint membership in international organizations (e.g., Simmons and

Elkins, 2004) . These examples illustrate the concern of violation of SUTVA in empirical

studies when researchers want to investigate the casual effects of a treatment: when units

under study are interconnected, a treatment assigned to one unit can influence potential

outcomes of other units, known as interference or spillover effects in the literature of causal

inference.

A popular approach to addressing interference is to fit regression models that incorpo-

rate the treatment variable, a measure of interference, like weighted average of neighbor

units’ treatment status, and a vector of unit level control variables (e.g., Arpino and Mat-

tei, 2016). And treatment effects are derived from estimated coefficients. This approach

may be plausible when connections between unit pairs are unconfounded1, like geographical

location. However, when units under study are socially connected, the formation of social

ties between a pair of units depends on some unit-level features. If these features also

affect the behavioral outcome, they confound the relationship between network formation

and outcome (Goldsmith-Pinkham and Imbens, 2013). The problem becomes even more

complex if some of these features also affect the adoption of treatment. In such scenarios,

regression model based approaches may fail to account for the confoundedness of social

network formation, causing bias in estimation of treatment effects.

To address this problem, we propose a generalized propensity score (GPS) based ap-

proach for identification and estimation of treatment effects. In network data, treatment

effects are defined as differences in average potential outcomes under different levels of

“effective treatment” (Manski, 2013), which is a function, termed “exposure mapping”

1It means that no variables affect both outcome and formation of connections between units.
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in Aronow and Samii (2017), of the treatment assignment vector and the social network.

The chosen form of this exposure mapping reflects how researchers perceive interference

between units. In this paper, we assume it is flexible but correctly specified. Average

potential outcomes can be identified with generalized propensity score for each level of

effective treatment (Imbens, 2000). If we properly specify probabilistic models for both the

treatment assignment mechanism and network formation process, we can then estimate

generalized propensity score for each unit, given that the exposure mapping depends on

the treatment assignment vector and the social network.

Generalized propensity scores can be estimated via analytical expression if the expo-

sure mapping has a simple functional form. In more complex scenarios, like continuous

effective treatment, simulations based on the probabilistic models can be utilized for their

estimation (e.g., Aronow and Samii, 2017). Once generalized propensity scores are esti-

mated, average potential outcomes as well as treatment effects can be estimated with the

inverse-probability weighting estimators. Uncertainty estimates can be obtained by imple-

menting the network HAC estimator (Kojevnikov et al., 2021; Leung and Loupos, 2022)

that accounts for correlations among observations in the social network.

The confoundedness of social network formation complicates the identification and es-

timation of treatment effects. Even in experimental studies where treatments are ran-

domized, confounded social links can pose challenges in identifying these effects. With

observational data, the situation becomes even more complicated due to the potential in-

teractions between treatment assignment and network formation. For example, treatment

assignment mechanism and network formation can be simultaneously determined by ex-

ogenous covariates (Franzese and Hays, 2008; Han et al., 2021), treatment assignment may

affect tie formation process (Comola and Prina, 2021), and social network may induce dif-

fusion of treatment adoption (Leung and Loupos, 2022)2. Moreover, network formation

and treatment adoption could even mutually reinforce each other.

When both treatment and network are confounded, various mechanisms could underlie

the treatment effects. Consider an instance where we want to evaluate the impact of a

new political communication technology (PCT) on political participation. If residents who

2It means that the adoption of treatment by one unit might also affect the likelihood that other units

adopt the treatment.
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hold official positions are typically more engaged in adopting PCT and participating in

political activities than other residents, and if they are more likely to form social ties,

then these village leaders tend to connect with more adopters than other residents. Even

after addressing the confounding influence of local official position, neglecting the spillover

effects could bias the estimated effect of PCT adoption on political participation. This

stems from the fact that we are essentially estimating the combination of both direct and

spillover effects. A positive spillover effect can lead to an overestimation of the direct

effect, whereas a negative spillover effect can result in its underestimation. Therefore, it is

essential to jointly model treatment assignment mechanism and network formation process

to identify both direct and spillover effects.

In fact, joint modeling of treatment assignment mechanism and network formation

process is central to the proposed method. Yet, estimating a combined probabilistic model

for them can be challenging, particularly when we introduce additional constraints like row

normalization on network entries. To circumvent this complexity, we propose to factorize

these two processes so that researchers can model them separately or sequentially to simplify

estimation under alternative assumptions.

This paper contributes to the burgeoning literature on causal inference with social

network data (Ogburn et al., 2024). It extends the framework of Aronow and Samii (2017)

to observational settings and relaxes the assumption of unconfounded network. The idea

of modeling network formation process echoes the insights of Toulis et al. (2021) that

studies the problem of network dynamics as treatment, while our approach distinctively

evaluates the joint effect of a treatment assignment variable and a social network, which

is static but random. Highlighting other relevant studies, Forastiere et al. (2021) and

Sanchez-Becerra (2022) also propose propensity score based approach to casual inference

with observational network data. Working under tighter assumptions, they further suggest

parametric models for a direct estimation of generalized propensity scores. In contrast,

the proposed method is flexible to accommodate multiple types of treatment variables,

networks and their interactions. The trade-off is computational demand, which may limit

its feasibility on large scale network datasets. Additionally, Jackson et al. (2022) introduces

a peer-influenced propensity score and Leung and Loupos (2022) proposed a graph neural
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network (GNN) based propensity score. Both methods can incorporate the diffusion of

treatment adoption induced by the network, operating under the assumption that networks

are unconfounded.

The rest of this paper is organized as follows. Section 2 outlines the contextual back-

ground of a motivating example. It investigates the effect of a new political communication

technology on political participation in Uganda. In Section 3, we set up the potential out-

come framework, define the causal estimands, and develop key identification assumptions.

Section 4 introduces the generalized propensity score based approach. We illustrate de-

tails of estimation and inference of treatment effects based on generalized propensity score.

Section 5 reports results of several Monte Carlo studies designed to investigate the finite

sample properties of the proposed method. Section 6 provides a comparison of estimation

results from our motivating example, contrasting the proposed method with an existing

estimation strategy. The last section concludes.

2 A Motivating Example

Whether adoption of information and communication technology (ICT) promotes political

engagement in developing countries has been a long-standing debate in comparative politics.

In theory, ICT innovations reduce communication costs, facilitating political participation

among marginalized groups have limited opportunities to communicate with politicians

(Grossman et al., 2020). However, existing literature provides mixed evidence on the effect

of ICT adoption on political participation. In this paper, we investigate the effect of the

U-Bridge program, a new political communication technology, on political participation in

16 Ugandan villages, combing replication data from Ferrali et al. (2020) and Eubank et al.

(2021).

The U-Bridge program was implemented in a district located in northwestern Uganda.

It allows residents to contact district officials via text message, both freely and anonymously.

It was implemented in a field experiment that encouraged usage in 131 randomly selected

villages. Residents from treatment villages were invited to periodic community meetings

about ways to communicate with local officials. The first round of meetings was held in late

2014. To investigate the pattern of adoption of U-Bridge, Ferrali et al. (2020) conducted
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in-person surveys in 16 treatment villages, where the U-Bridge program was advertised, in

2016, two years after launch of the program. These surveys gathered multiple individual-

level variables such as age, gender, attendance at meetings, U-Bridge adoption status, and

various social ties between resident pairs.

Survey responses from the 16 villages are utilized in the empirical analysis. The treat-

ment variable is a binary indicator for whether a resident adopted U-Bridge. While U-

Bridge was advertised in these villages, whether to adopt it is determined by the residents.

The outcome variable is a continuous summary index of political participation that aggre-

gates political actions in the last 12 months. Other individual level covariates include age,

gender, levels of income, binary indicators representing whether a resident has attained sec-

ondary education, whether they occupy a formal leadership role in the village, and whether

they own a phone, and a behavioral proxy measure of care for the community 3. The

original survey data comprises information on 3,184 respondents across the 16 treatment

villages. After excluding entries with missing values, the dataset used in this paper covers

3,018 respondents, with 135 of them having adopted U-Bridge.

There are various social relations among the residents. Ferrali et al. (2020) collect

four types of social ties: family relationships, friendships, lender relationships, or problem-

solving connections. These social ties may channel the spillover effect of U-Bridge adoption

via inter-personal communication (Sinclair et al., 2012). In addition, the formation of social

ties may depend on individual characteristics that also affect political participation, i.e.,

it is confounded. To construct social networks based on social ties, we assume that two

residents within the same village are connected if they share any of the four types of social

ties above. Consequently, connections between residents are undirected. We exclude social

ties spanning different villages, which reduces the overall network connecting residents

to 16 distinct components 4. Figure 1 suggests that village leaders generally have more

connections. In fact, village leaders tend to have nearly doubled connections compared to

ordinary residents.

In this motivating example, we face several challenges in identifying and estimating

the effect of U-Bridge on political participation. First, the adoption of U-Bridge is not

3Detailed variable descriptions are available in the appendix of Ferrali et al. (2020).
4The construction of social network is consistent with Ferrali et al. (2020) and Sanchez-Becerra (2022).
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Figure 1: Network Visualization for a Village

Note: Size of each vertex is proportional to the square root of degree. Vertex in red represents respondent

who occupies formal leadership role within village.

random, and it depends on resident level covariates like education. Second, the presence

of social network induces interference of U-Bridge adoption on political participation, a

violation of the Stable Unit Treatment Value Assumption (SUTVA). Lastly, the formation

of social ties are nonrandom, and it depends on resident level covariates, like leadership,

that may also affect political participation. Ignoring the social network and failing to

address confoundedness of social network formation will lead to bias in treatment effect

estimation. We propose a new potential outcome framework incorporating social network

and a propensity score based estimation strategy to address these issues.
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3 Setup

3.1 Notation

Suppose we have a cross-sectional dataset that includes N units. LetW denote an observed

network5, a (N × N) random adjacency matrix with entry Wij specifying the connection

between unit i and j6. In the terminology of network analysis, we use G(V , E) to denote the

associated random graph for W , where V = {1, . . . , N} is the set of units 7 and E is the set

of edges, i.e., (i, j) ∈ E ifWij > 0. If G is undirected, Wij ≡ Wji for all i, j ∈ V . Otherwise,

Wij and Wji may be different. W can be a weighted matrix, wherein the intensities of

connections between units i, j and i, k are different if Wij ̸= Wik. Throughout this paper

we assume that W is unweighted. That is, Wij ∈ {0, 1} ∀i, j. In addition, we assume

Wii ≡ 0 for all i ∈ V . Since W is random, let W denote the sample space of W .

We use Di ∈ {0, 1} to denote a binary treatment assigned to unit i. Yi is the observed

outcome of interest. In vector form, we denote D = (D1, . . . , DN) as a (N × 1) vector

of treatments and Y = (Y1, . . . , YN) as the vector of observed outcomes for all units. Let

D = {0, 1}N be the sample space of D.

We also observe a (p × 1) vector of pre-treatment covariates Xi for each unit. For

network data, Xi can be decomposed into two parts: confounders that affect adoption of

the treatment, and covariates contributing to homophily that induces network formation.

We denote XD
i as the first part and XW

i as the second part. It is worth noting that

these two subsets of covariates are not always mutually exclusive, meaning there may be

covariates simultaneously impact both the adoption of treatment and network formation.

In addition, XW
i could also incorporate dyadic covariates, such as geographical distance or

the bilateral trade volume between country pairs. In matrix form, let X = (X ′
1, . . . , X

′
N)

denote the matrix that aggregates all covariate vectors. Similarly, XD and XW are used

5We use bold uppercase letters to represent random vectors and matrices, bold lowercase letters their

corresponding realizations.
6For notational convenience, we focus on the case of a single large network, while the results can

be generated to datasets consisting of multiple networks or clusters (e.g. Hudgens and Halloran, 2008;

Sanchez-Becerra, 2022) by regarding no cross-cluster connections, i.e., Wij ≡ 0 if unit i and j belong to

different clusters.
7They are also named “nodes” or “vertices” in network analysis.

7



to denote corresponding matrices for the aforementioned subsets of covariates.

3.2 Potential outcomes in social network data

In most social network data, not only the observed network W is random, but also its

formation is confounded just as the assignment of treatment, meaning covariates affecting

network formation also determine the potential outcome. In addition, network structure

induces interference, as treatment assigned to one unit may affect potential outcome of other

units. To address these two issues, we extend the potential outcome framework (Rubin,

1974) to model each unit’s potential outcome as a function of the treatment assignment

vector and network structure: Yi(d,w) for i ∈ V , d ∈ D andw ∈ W . Under the assumption

of no multiple versions of treatment (consistency, Rubin, 1986), the observed outcome

Yi = Yi(d,w) if D = d and W = w.

In this generalized potential outcome framework, even if the treatment assignment vec-

tor remains the same, as long as network changes, the potential outcome may be different.

For example, network w on the left panel of Figure 2 is denser than network w′ on the

right panel, while the treatment status for each unit is the same. Yi(d,w) may not equal

Yi(d,w
′) as unit i has connections with more treated units when the network is denser.

Therefore, we regard D and W as “joint” assignments of treatment and network.

Given the notations above, a non-parametric structural equation model (NP-SEM,

Pearl, 2009) for network formation, treatment assignment and outcomes is represented

as:

Wij = gw(i, j,X, ϵwij),

Di = gd(i,X, ϵdi ),

Yi(d,w) = gy(i,d,w,X, ϵyi ),

(1)

where ϵwij, ϵ
d
i and ϵyi are random errors. The correlation between ϵwij and ϵdi characterizes

interactions between network formation and treatment assignment. When the network is

undirected and link formation between pair of units depends only on pairwise covariates,

the network formation model can be simplified as Wij = gw(Xi, Xj, ϵ
w
ij). In social network

data, the covariate matrixX for all units may determine treatment adoption and behavioral

outcome for each unit i. To see this, In NP-SEM (1), X can be written as (Xi,X−i), where
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Figure 2: Potential Outcomes with Different Networks

Note: Blue nodes denote units under treatment, and grey nodes denote units under control.

X−i is named contextual variable in the literature of network analysis (Jackson, 2008;

Jackson et al., 2022). By incorporating such variables in functions gd and gy, researchers

consider the influence of social norm on each unit’s action on treatment adoption and

behavioral outcome. If researchers have strong prior belief that such influence does not

exist, the models can be further simplified asDi = gd(Xi, ϵ
d
i ) and Yi(d,w) = gy(d,w, Xi, ϵ

y
i )

by dropping the contextual variable.

Since the treatment vector and network structure jointly determine the potential out-

comes, gy for potential outcome is a function of high-dimensional inputs, making the iden-

tification and estimation of treatment effects a challenging task. Following existing litera-

ture, we assume that there exists a low-dimensional, and possibly vector-valued, function

of treatment assignment vector and network that represents the potential outcomes.

Assumption 1. Exposure mapping. There exists a known function e : N×D×W → T ,

such that

Yi(d,w) = Yi(ti)

if e(i,d,w) = ti
8. Under this assumption, Yi(d,w) = Yi(d

′,w′) if e(i,d,w) = e(i,d′,w′).

8The potential outcome with exposure mapping is denoted as Yi(d,w) = Ỹi(ti) in Leung and Loupos

(2022) to distinguish between original treatment assignment and exposure mapping. For notational con-
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In the literature of casual inference under interference, Ti = e(i,D,W ) is called “effective

treatment” (Manski, 2013) and e is the “exposure mapping” function (Aronow and Samii,

2017).

The exposure mapping approach has been adopted in methodological research on inter-

ference (e.g., Forastiere et al., 2021) as well as empirical research on spillover effect (e.g.,

Arpino and Mattei, 2016). In the literature, scholars usually assume that the network

structure is fixed and part of the exposure mapping function that defines interference struc-

ture. In this paper, we regard network as an input like the treatment assignment vector.

Therefore, W and D jointly determine the effective treatment for each unit. Specifically,

treatment assignment vector and network structure are common inputs for all units under

study, while output of the exposure mapping, the effective treatment, is unit-specific.

Note that the specification of exposure mapping function needs substantial knowledge

on the treatment. Here are some examples. When there is no interference, the effective

treatment just equals individual treatment, and Ti = e(i,D,W ) = Di. When network

structure induces interference, if the potential outcome for each unit is determined by its

own treatment status as well as the number of connections with treated units, a vector-

valued exposure mapping function

Ti = e(i,D,W ) = (Di,
∑
j

WijDj) = (Di, Zi) (2)

is specified. While its form can be flexible, we assume the exposure mapping function is

known and correctly specified by the researcher 9 . Under Assumption 1, we replace the

outcome model in NP-SEM (1) with Yi(t) = gy(i, t,X, ϵyi ).

3.3 Causal quantities of interest

When treatment is binary, there are only two potential outcomes for each unit, and causal

estimands are well-defined. The average treatment effect is ATE = E(Yi(1) − Yi(0)),

differences in average potential outcomes under treatment and under control. And average

treatment effect on the treated (control) are defined for units under treatment (control).

sistency, we keep using Yi(·) for potential outcomes throughout this paper.
9Readers may refer to Sävje (2023) for the results of misspecification of exposure mapping function.
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In network data, effective treatment represented by the exposure mapping function is often

multi-valued. Since treatment effects are differences in average potential outcomes, we first

define the average potential outcome at a given level of effective treatment as:

µ(t) = E(Yi(t)). (3)

Average potential outcome (3) is also called average dose-response function (ADRF), a

concept in medical statistics and recently adopted in the casual inference literature to

describe the relation between an outcome of interest and a continuous treatment. The

effect of effective treatment t compared to t′ is defined as:

τ(t, t′) = E(Yi(t)− Yi(t
′)) = µ(t)− µ(t′). (4)

While simple in its form, treatment effect (4) may have rich meanings given researchers’

choices of exposure mapping function. In this paper, we focus on direct and spillover

effects of a treatment assignment vector. To identify these treatment effects, we use the

exposure mapping function (2) as an illustration, and then the average potential outcome

is µ(d, z) = E[Yi(d, z)]. Our second causal estimand is conditional direct effect :

τ(z) = E[Yi(1, z)− Yi(0, z)] = µ(1, z)− µ(0, z), (5)

which measures the effect of individual treatment adoption d while holding the level of

interference z constant. And the marginal direct effect is defined by averaging τ(z) over

the distribution of z: τ =
∫
τ(z)fZ(z)dz. Next, the conditional spillover effect is defined

as:

δ(z, z′, d) = E[Yi(d, z)− Yi(d, z
′)] = µ(d, z)− µ(d, z′), (6)

which is the difference between average potential outcomes when we fix the value of indi-

vidual treatment d and compare two alternative levels of interference z and z′. When z′

is some benchmark value, e.g., z′ = 0, we can simplify the notation by dropping z′ in the

equation and write δ(z, d) = µ(d, z)−µ(d, 0). Like the marginal direct effect, we define the

marginal spillover effect as δ(d) =
∫
δ(z, d)fZ(z)dz.

11



3.4 Unconfoundedness of treatment assignment and network for-

mation

For causal inference with observational data, when SUTVA holds, identification results

are based on the conditional unconfoundedness (ignorability) assumption: {Yi(0), Yi(1)} ⊥⊥

Di|Xi. It states that, conditional on observed confounders Xi, potential outcomes are inde-

pendent of treatment assignment. For network data, potential outcomes are determined by

the effective treatment, a function of both treatment assignment vector and social network,

and thus, the ignorability assumption must be restated. We introduce the following as-

sumption to account for confounders that affect treatment assignment, network formation,

and potential outcomes.

Assumption 2. Unconfoundedness of treatment assignment and network formation.

Yi(ti) ⊥⊥ {D,W }|X ∀i ∈ N ,d ∈ D,w′ ∈ W , (7)

where ti = e(i,d′,w′) is a certain level of effective treatment. Condition (7) states that,

given observed covariates matrix X, potential outcomes are independent of treatment

assignment and social network formation. It differs from conventional assumption of un-

confoundedness as we condition on the observed covariates for all units rather than indi-

vidual covariates. This is because X determines assignment of treatment vector as well

as formation of social network, and conditioning solely on Xi is not sufficient to address

the confounding between D, W and the potential outcomes. Since effective treatment

Ti = e(i,D,W ) is a function of D and W , equivalently, we have Yi(ti) ⊥⊥ Ti|X.

Remark 1. Literature on causal inference with network data has made several al-

ternative assumptions. Condition (7) is similar to the high-dimensional condition of un-

confoundedness 10 in Leung and Loupos (2022) that incorporates diffusion of treatment

adoption. It generalizes the condition of unconfoundedness proposed by Forastiere et al.

(2021), assuming individualized treatment adoption. In addition, Jackson et al. (2022)

make a Societal Conditional Unconfoundedness assumption 11 to account for the equilibrial

10The original assumption made in Leung and Loupos (2022) focuses on treatment assignment: {Yi(·)} ⊥⊥

D|X,W . Given that network formation is unconfounded, we replace the treatment assignment vector with

the exposure mapping.
11Jackson et al. (2022) also assume that potential outcomes only depend on individual treatment status.
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behavior in treatment adoption when units under study are strategic. These approaches

regard the network as fixed and need to condition on the network structure. In a recent

paper, Sanchez-Becerra (2022) derives the condition of unconfoundedenss incorporating the

network formation process. However, unlike condition (7), it assumes as-if unconfounded-

ness in the formation of social ties.

4 A Generalized Propensity Score Based Approach

Propensity score is the conditional probability of receiving a (certain level of) treatment

given observed confounders (Rosenbaum and Rubin, 1983). When treatment is multi-

valued or continuous, the conditional probability is called generalized propensity score

(GPS, Hirano and Imbens, 2004). In this section, we apply propensity score based method

to the identification and estimation of treatment effects from social network data under

condition (7). Unlike existing approaches (e.g., Sanchez-Becerra, 2022; Forastiere et al.,

2021) that assume conditional independence of (or exchangeable) treatment assignment,

condition (7) allows the effective treatment assigned to each unit to be interdependent,

as inputs of the exposure mapping function, treatment assignment vector and network

structure, are common to all units.

Formally, we define the generalized propensity score for effective treatment Ti = t of

unit i, given observed covariate matrix, as:

r(i, t;X) = Pr(Ti = t|X) = Pr(e(i,D,W ) = t|X). (8)

GPS (8) is similar to conventional propensity score for a binary treatment indicator, which

is probability that the treatment assigned to unit i. Propensity score for binary treatment

indicator usually only depends on individual covariates, and differences in propensity scores

across units come from heterogeneity of their values. For GPS (8) in network setting, the

input X is common for all units, and we use index i to denote unit-level heterogeneity. We

make the following assumption on the overlapping of generalized propensity score.

Assumption 3. Positivity of the generalized propensity score.

0 < r(i, t;X) < 1, ∀i ∈ N , t ∈ T . (9)
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Given the definition of generalized propensity score r(i, t;X), under Assumptions 1 and

2, we have the following propositions.

Proposition 1. Balancing property of generalized propensity score.

Pr(Ti = t|X, r(i, t;X)) = Pr(Ti = t|r(i, t;X)). (10)

The balancing property implies conditional unconfoundedness given generalized propensity

score:

{Yi(·)} ⊥⊥ Ti|r(i, t;X). (11)

Propositions 1 states that, conditioning on the generalized propensity score is sufficient

to address confounding in treatment assignment and network formation. Under Assumption

3, the balancing property of generalized propensity score implies identification of average

potential outcome given generalized propensity score.

Proposition 2. Identification of the average potential outcome µ(t).

E{Yi1{Ti = e(i,D,W ) = t}
r(i, t;x)

} = E{Yi(t)} = µ(t). (12)

4.1 Joint modeling of treatment assignment and network forma-

tion

For binary treatment indicators, propensity score is usually estimated by a treatment as-

signment model like Logit or Probit model. If we adopt a similar approach to estimate

generalized propensity score (8), we need to fit a model with high-dimensional inputs X.

When network formation is unconfounded, Leung and Loupos (2022) propose a graph neu-

ral network (GNN) based estimator for such generalized propensity scores, conditioning on

the network structure. However, in the proposed potential outcome framework, the social

network itself determines the potential outcome, and conditioning on it will cause bias.

To tackle this problem, we propose an alternative approach to estimate GPS (8) by

jointly modeling the assignment mechanism of treatment and the formation of network.

Under condition (7), these two processes can be represented by a probabilistic model
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fD,W |X(d,w) given covariate matrix X, and then GPS (8) is re-formulated as:

r(i, t;X) = Pr(e(i,D,W ) = t|X)

=

∫
d∈D

∫
w∈W

1{e(i,d,w) = t}fD,W |X(d,w) dd dw.
(13)

Therefore, if we properly model the joint distribution of treatment assignment vector and

social network, we can estimate GPS (8) based on its alternative formulation (13) given

the exposure mapping function.

While jointly modeling the distribution of D and W incorporates complex dynam-

ics between them in observational data, in practice it is not straightforward to specify a

probabilistic model for treatment assignment together with network formation, as these

two processes are qualitatively different. To simplify modeling, we can factorize these two

processes given substantive prior knowledge. For example, we can assume that these two

processes are independent given the “common exposure” (Franzese and Hays, 2008). The

upper left panel of Figure 3 is a diagram of such factorization. The joint distribution can

be written as:

fD,W |X(d,w) = fD|X(d)fW |X(w) = fD|XD(d)fW |XW (w). (14)

Since treatment assignment and network formation are two processes, it is possible that

one precedes the other and intervenes the latter. For example, the network may cause

the diffusion of treatment adoption (lower left panel of Figure 3). If treatment assignment

precedes network formation instead, the network becomes a mediator (upper right panel of

Figure 3). For these two scenarios, researchers can sequentially model these two processes.

Finally, it is also possible that treatment assignment and network formation mutually

reinforce each other, known as a co-evolution process (lower right panel of Figure 3). In

this case, researchers need to specify a simultaneous equation model to account for the

simultaneity12. Through out this paper, we use the case of common exposure to illustrate

factorization.

Once we model the joint distribution of treatment assignment and network formation,

given the form of exposure mapping function, we can estimate the generalized propensity

12One estimation strategy for such simultaneous equation models for co-evolution is the latent variable

model proposed by Han et al. (2021) based on the latent space model (Hoff, 2021) for network formation.
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Figure 3: Factorization of Treatment Assignment and Network Formation

Note: Arrows in red represent interactions between treatment assignment and network formation.

score for effective treatment of each unit. Assuming that treatment assignment is individ-

ualized and tie formation is independent, factorization (14) becomes

fD|XD(d) =
N∏
i=1

Pr(Di = di|XD
i ),

fW |XD(w) =
N∏
i=1

N∏
j=1
j ̸=i

Pr(Wij = wij|XW
i , XW

j ).

We consider the exposure mapping function (2), meaning the potential outcome is deter-

mined by the unit’s own treatment status and the number of units under treatment that
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it shares a common link. For unweighted network, GPS (13) becomes:

r(i, (d, z);X) =Pr [e(i,D,W ) = (d, z)|X]

=Pr

[
Di = d,

N∑
j=1

WijDj = z|X

]
=Pr(Di = d|XD

i )

×
∑

dj∈{0,1},wij∈{0,1}
j ̸=i

1{
N∑
j=1
j ̸=i

wijdj = z}
N∏
j=1
j ̸=i

Pr(Dj = dj|XD
j )Pr(Wij = wij|XW

i , XW
j ).

(15)

Essentially, the formulation of GPS (15) is a synthesis of probabilistic models of treatment

assignment and network formation.

Like the example above, for simple functional forms of exposure mapping, special types

of network like unweighted networks, and binary or general categorical treatment indica-

tors, it is possible to get closed-form expression for the generalized propensity scores. For

more complicated cases, like continuous treatment, weighted networks and complex func-

tional form of exposure mapping incorporating influences from higher order neighbors, it is

difficult to get closed-form expression for the generalized propensity score, and simulation-

based methods (Aronow and Samii, 2017; Toulis et al., 2021) can be used for its estimation.

4.2 Estimation and inference

In the preceding part of this section, we introduce the generalized propensity score r(i, t;X)

for effective treatment and show its balancing property. We further show the identification

of average potential outcomes and treatment effects defined as differences in average po-

tential outcomes. Next, we discuss estimation and inference of treatment effects. We focus

on conditional effects, and marginal effects are weighted averages of them.

Given the exposure mapping function, once the probabilistic model for treatment as-

signment and network formation is estimated, generalized propensity score, r̂(i, t;X), can

be constructed based on it. Then we can estimate average potential outcome µ̂(t) with the

Horvitz-Thompson estimator:

µ̂(t)HT =
N∑
i=1

1{Ti = t} Yi
r̂(i, t;X)

. (16)
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However, when r̂(i, t;X) is close to 0, weight for observation i, 1/r̂(i, t;X), can be

extremely large. Therefore, the Horvitz-Thompson estimator (16) is of high variance.

Alternatively, we can estimate µ̂(t) with the Hájek estimator, which is proved to improve

efficiency at the cost of finite sample bias:

µ̂(t)H =

∑N
i=1 1{Ti = t} Yi

r̂(i,t;X)∑N
i=1 1{Ti = t} 1

r̂(i,t;X)

. (17)

Compared to the Horvitz-Thompson estimator (16), the Hájek estimator (17) allows the

denominator to vary according to sum of the weights. It improves estimation efficiency

by shrinking the magnitude of the estimate when it is large, and increasing its magnitude

when it is small.

To further improve estimation efficiency, we can also estimate µ(t) with the augmented

inverse probability weighting (AIPW) estimator, with a properly-specified outcome model

µ(i, T,X):

µ̂(t)AIPW =
N∑
i=1

1{Ti = t}Yi − µ̂(i, t,X)

r̂(i, t;X)
+ µ̂(i, t,X). (18)

The AIPW estimator (18) is also known as the doubly robust estimator, as the correct

specification of either the generalized propensity score or the outcome model ensures con-

sistency estimation (Glynn and Quinn, 2010). To deal with the high-dimensionality of X

in (18), we can fit µ̂(i, t,X) with machine learning models like random forests. Otherwise,

we can fit a linear model by replacing X in the outcome model with individual covariates.

Taking the AIPW estimator (18) as an example, an estimator for average effect of

effective treatment at level t relative to level t′ is

τ̂(t, t′) = µ̂(t)AIPW − µ̂(t′)AIPW . (19)

The AIPW estimator (19) for treatment effects estimation is used in the rest of the paper

given its nice property of double robustness. For inference, we derive the asymptotic

distribution of (19) for τ(t, t′). Define

τi(t, t
′) =[1{Ti = t}Yi − µ(i, t,X)

r(i, t;X)
+ µ(i, t,X)]

− [1{Ti = t′}Yi − µ(i, t′,X)

r(i, t′;X)
+ µ(i, t′,X)]
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and φi(t, t
′) = τi(t, t

′)− τ(t, t′). Under a set of regularity conditions,

σ−1
t,t′

√
N(τ̂(t, t′)− τ(t, t′))

d−→ N (0, 1), (20)

where σ2
t,t′ = var(φi(t, t

′)|X). A formal proof of the asymptotic distribution (20) can be

found in Section A of the appendix. For variance estimation, Leung and Loupos (2022)

show that the network HAC estimator (Kojevnikov et al., 2021) is a consistent estimator

for σ2
t,t′ , which is written as:

σ̂2
t,t′ =

1

N

N∑
i=1

N∑
j=1

(τ̂i(t, t
′)− τ̂(t, t′)) (τ̂j(t, t

′)− τ̂(t, t′))1{ℓW (i, j) ≤ b}

=
1

N

N∑
i=1

N∑
j=1

φ̂i(t, t
′)φ̂j(t, t

′)1{ℓW (i, j) ≤ b},

(21)

where ℓW (i, j) is the shortest path length from i to j on the observed network W and b is

a pre-specified bandwidth. Note that the HAC estimator (21) incorporates clustered data

as a special case, wherein ℓW (i, j) = ∞ if unit i and j belong to different clusters, and then

(21) equals the clustered robust variance estimator.

Remark 2. In empirical studies, linear models are common practices for estimating

direct and spillover effects (e.g., Cai et al., 2015). For example, researchers can fit the

following regression model:

Yi = α + τDi + γ
∑
j

WijDj +X ′
iβ + εi. (22)

Based on this model, we can recover causal quantities of interest from the parameters

τ and γ. While model (22) is easy to implement and interpret, when social network

formation is confounded, individual covariates Xi in (22) may not be sufficient to adjust for

confounding. In addition, the outcome model may be mis-specified, and thus, the estimated

direct and spillover effects are biased. We illustrate this argument through several Monte

Carlo studies.

5 Monte Carlo Studies

In this section, we conduct a series of Monte Carlo studies to investigate finite sample prop-

erty of the proposed generalized propensity score based method for estimating treatment
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effects from observational network data. We focus on the AIPW estimator (19) and con-

sider bias, root mean squared error (RMSE) and coverage rate of 95% confidence interval

as key performance metrics. Difference between average estimated standard error (SE) and

sampling variation (SD) is also reported.

We use clustered data for simulation studies, where each simulated dataset consists of

multiple independent clusters. Units within the same cluster may form link between each

other, but there are no connections across clusters. Clustered data can be seen as a special

case of a single network, where the probability of cross-cluster link formation is 0 and

known to the researcher. For a given simulated dataset, We use c(·) to denote the cluster

that each unit belongs to. Thus c(i) = 1 if unit i belongs to cluster 1. Suppose W is the

observed network that specifies connections between units for this simulated dataset, then

if c(i) ̸= c(j), Wij ≡ 0, otherwise Wij ∈ {0, 1}. For notational convenience, we assume

that sizes of clusters are equal. We consider binary treatment indicator and unweighted

network with no directions. The data generating process (DGP) for treatment assignment

and network formation is as follows:

Xi ∼

N(1, 1) if i is odd ,

N(−1, 1) if i is even ,

Wij =

0 if c(i) ̸= c(j),

1{0.1− 0.25|Xi −Xj|+ νi ≥ 0}, νi ∼ N(0, 1) if c(i) = c(j),

Di = 1{0.1 + 0.5Xi + ei ≥ 0}, ei ∼ N(0, 1),

(23)

where cluster c(·) is pre-specified. For each cluster, observed covariate Xi is drawn from

independent but not identical normal distributions13. For simplicity, we assume that cluster

size equals 4 and cluster is determined by the index of each unit, i.e., units 1, 2, 3, and 4

belong to cluster 1, units 5, 6, 7, and 8 belong to cluster 2, and so on. We use the exposure

mapping function (2), and obviously Zi ∈ {0, 1, 2, 3}. Therefore, the effective treatment Ti

takes 8 different levels: (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3). Model for the

potential outcome is:

Yi(d, z) = 1 +Xi +

∑
j∈c(i),j ̸=iXj

3
+ d+ 0.5z + dz + εi, εi ∼ N(0, 1), (24)

13In this case, the assumption of i.i.d. Xi in Sanchez-Becerra (2022) is violated.
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where the term
∑

j∈c(i),j ̸=i Xj

3
represents contextual effect.

Since there are 8 levels of effective treatment,
(
8
2

)
= 28 different treatment effects can

be estimated. We focus on a direct treatment effect, τ((1, 1), (0, 1)) = µ(1, 1) − µ(0, 1),

and a spillover treatment effect, τ((1, 1), (1, 0)) = µ(1, 1)−µ(1, 0), as quantities of interest.

Outcome model (24) implies constant treatment effects, i.e., individual level treatment

effects are constant across units and do not depend on covariate Xi. We also consider

an alternative DGP for potential outcome with heterogeneous treatment effect, and the

results are reported in section B of the appendix. Simulated datasets are generated based

on the DGP above with varying sample sizes. Since size of cluster is fixed, we generate

datasets with different numbers of clusters. Specifically, We consider the number of clusters

equals Nc = 50, 100, 200, 500 and 1000. For each number of clusters, We conduct 2,000

simulations.

To estimate treatment effects, we first estimate models for treatment assignment and

network formation, assuming they are correctly specified as in (23), and then we construct

generalized propensity score using the closed-form expression (15). Next, we use the AIPW

estimator (19) to estimate treatment effects. For uncertainty estimates, we calculate clus-

tered robust standard error, which is equivalent to the network HAC variance estimator (21)

in the simulated data setting, to construct 95% confidence interval. Results of Monte Carlo

studies for the two treatment effects are summarized in Table 1 and Table 2.

Table 1: Finite Sample Properties: τ((1, 1), (0, 1))

Nc Bias RMSE Coverage Rate SE SE - SD
50 0.002 0.368 0.929 0.330 −0.039
100 −0.003 0.246 0.948 0.240 −0.006
200 0.000 0.180 0.948 0.173 −0.007
500 0.004 0.118 0.952 0.112 −0.006
1000 0.002 0.079 0.951 0.079 0.000

We find that, for both direct and spillover effects, the AIPW estimator produces small

bias even when sample sizes are small. Meanwhile, root mean squared error also decreases

as number of clusters increases, as both bias and sampling variation decrease. Next, We

investigate properties of variance estimator. We find that, the coverage rate of 95% confi-

dence interval is close to the nominal rate. In addition, difference between average estimated
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Table 2: Finite Sample Properties: τ((1, 1), (1, 0))

Nc Bias RMSE Coverage Rate SE SE - SD
50 0.006 0.314 0.946 0.295 −0.019
100 −0.009 0.220 0.955 0.215 −0.004
200 −0.001 0.157 0.948 0.153 −0.004
500 −0.003 0.100 0.951 0.099 −0.001
1000 0.002 0.069 0.953 0.069 0.000

standard error and sampling variation of the proposed estimator decreases as the number

of clusters increases, indicating that the variance estimator is consistent.

For model comparison, we also fit a regression model and derive the treatment effects

from relevant coefficients. Robust standard errors clustered at group level are calculated.

The adopted regression model is same as specification (22). Based on this model, estimates

are τ̂ for the direct effect and γ̂ for the spillover effect. Note that the outcome model (22) is

mis-specified by ignoring the interaction term Di ·Zi and contextual effect of the observed

covariate. Estimation results based on regression model are reported in section B of the

appendix. Sampling distributions of the AIPW estimator as well as regression based esti-

mator are displayed in Figure 4, and bias and RMSE plots are shown in Figure 5. When

the number of clusters is small, the proposed estimator has bias close to 0, and it decreases

quickly as the number of clusters increases. In terms of RMSE, it also decreases quickly

as the number of clusters increases. For the regression based estimator, it decreases only

marginally because of large bias.
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Figure 4: Sampling Distribution with Different Number of Clusters
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Figure 5: Finite Sample Properties: Bias and RMSE

Additional Monte Carlo studies indicate that properties of the proposed AIPW estima-

tor are robust to heterogeneous treatment effect. Details of results are available in Section B

of the appendix.

6 Empirical Analysis

To demonstrate its applicability in empirical social science research, we apply the proposed

method to the motivating example that investigates the effect of U-Bridge on political

participation in Uganda. Additionally, we compare the GPS based method with regression

models, discussing the plausibility of their underlying assumptions in the empirical setting

described in Section 2.

We start with several specifications of regression models. First, consider the scenario

wherein we ignore the network structure, assuming that the Stable Unit Treatment Value

Assumption (SUTVA) holds. Given that resident-level covariates might influence both

the adoption of U-Bridge and political participation, we control for these confounders in

the first regression model. Estimation results are presented in Column (1) of Table 3.

We observe a positive and statistically significant coefficient of adoption, suggesting that

adopting U-Bridge increases political participation.
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Next, recognizing that residents are inter-connected through various forms of social ties

within each village, we are interested in whether adoption of U-Bridge by one resident af-

fects political participation of other residents. Such spillover effects are conceivable due to

the transmission of information across social networks. Indeed, Sanchez-Becerra (2022) has

identified a notable spillover effect from attending U-Bridge meetings on political partici-

pation. To identify spillover effects, we need to specify the exposure mapping. We consider

effective treatment Ti = e(i,D,W ) = (Di,
∑

j WijDj) = (Di, Zi), same as exposure map-

ping (2). In this application, it means that political participation is determined by both

a resident’s own adoption of U-Bridge and number of her connections who adopt it. The

term
∑

j WijDj is then incorporated as an additional treatment variable in the regression

model, with its coefficient representing the spillover effect. Estimations are detailed in Col-

umn (2) of Table 3, which reveal a positive and substantial spillover effect. The coefficient

of Di, which represents the effect of direct treatment, diminishes, though remains positive

and significant. Lastly, an interaction term between Di and
∑

j WijDj is added to capture

treatment effect heterogeneity. The results of these estimations are displayed in Columns

(3) of Table 3. When incorporating the interaction term, both the coefficient of Di and the

coefficient of
∑

j WijDj see a marginal increase. The coefficient of the interaction term is

negative, though statistically insignificant, indicating decreasing effect of Di as
∑

j WijDj

increases.

While regression models are flexible and easy to implement, the estimates may be biased

due to model mis-specification. Moreover, it is hard to interpret the treatment effect when

the social network itself is part of the exposure mapping. As a result, we employ the

proposed method, a design-based alternative that directly models treatment assignment

mechanism and network formation process, to estimate treatment effects. We use the

third specification of regression model as outcome model in the proposed AIPW estimator,

and then fit network formation and treatment assignment models to construct generalized

propensity scores.

We fit network formation models separately for each village to account for village-level

heterogeneity. We fit a Logit model, first line in Model (25), for the presence of social

tie between a pair of residents. In the model specification, c(i) represents the village that
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Table 3: Regression Models for the Effect of U-Bridge on Political Participation

Outcome Variable Political Participation Index (Yi)

Model (1) Model (2) Model (3)

Adoption (Di) 0.340*** 0.261*** 0.365***

(0.700) (0.069) (0.096)

Interference (
∑

j WijDj) 0.048*** 0.053***

(0.007) (0.007)

Interaction (Di ·
∑

j WijDj) -0.029

(0.015)

Control Variable (Xi) ✓ ✓ ✓

Village Fixed Effects ✓ ✓ ✓

Observations 3,018 3,018 3,018

Notes: Robust standard errors clustered at village level are in the parentheses.

*** p < 0.01, ** p < 0.05, * p < 0.1.
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resident i belongs to. Control variables include absolute differences in age, gender, levels of

income, secondary education, and proxy measure of care for the community. These variables

represent observed homophily. We include binary indicators for whether at least one of them

own a phone and whether at least one of them occupy a leadership role within the village.

In addition, we add village-specific intercept, γw,c(i), to control for additional village-level

variations, like trust and informal institutions, in formation of social ties. Estimation results

are displayed in Section C of the appendix. While estimated coefficients are heterogeneous

across villages, for most villages, coefficients for the homophily measures are negative,

and corresponding 95% confidence intervals exclude 0. In addition, the effects of occupying

formal leadership role and owning a phone are positive and statistically significant on social

tie formation.

To model treatment assignment mechanism, we fit another Logit model, second line in

Model (25), for adoption of U-Bridge that includes resident-level covariates, and village-

level fixed effects (γd,c(i)) to control for unobserved village-level heterogeneity. Estimation

results are summarized in Table 10 in Section C of the appendix. We find that coefficients

for covariates like gender, education and leadership are statistically significant, while coef-

ficients for income and age are insignificant. We then estimate generalized propensity score

according to formulation (15) given estimated models for network formation and treatment

assignment.

Pr(Wij = 1) = logit−1(|Xi −Xj|′βw1,c(i) +X ′
ijβw2,c(i) + γw,c(i)),

P r(Di = 1) = logit−1(X ′
iβd1 + γd,c(i)).

(25)

We evaluate treatment effect estimates based on these two different estimation strate-

gies. Given that only a small proportion of respondents have adopted the U-Bridge pro-

gram, certain levels of effective treatment contain limited observations. As a result, our

analyses primarily focus on two direct treatment effects: τd1 = µ(1, 1) − µ(0, 1) and τd2 =

µ(1, 2)−µ(0, 2), and two spillover effects: τi1 = µ(0, 1)−µ(0, 0) and τi2 = µ(0, 2)−µ(0, 0).

For proposed AIPW estimator, we trim the top and bottom 2.5% estimated propensity

score to avoid extreme weights and calculate robust standard error clustered at village

level for inference. For regression models, we focus on the third specification used in the

AIPW estimator for model comparison. We derive estimates of treatment effects using esti-
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mated coefficients. Estimated treatment effects with 95% confidence intervals are displayed

in Figure 6.

For direct effect τ̂d1, both AIPW estimator and regression model yield positive and sta-

tistically significant estimates, and the magnitudes of estimated effects are similar. We may

conclude that, conditional on connection to one resident that adopted U-Bridge, the adop-

tion of U-Bridge increased residents’ political participation. Next, we investigate whether

the direct effect is constant or is it moderated by number of residents’ connections. Re-

garding the direct effect τ̂d2, point estimate of AIPW estimator decreases, though the 95%

CI overlaps with that of τ̂d1. Estimate based on regression model also decreases marginally,

as the coefficient for the interaction term is negative.

For both spillover effects, estimates based on AIPW estimator and regression model are

all positive and statistically significant. We also find that point estimates τ̂s2 are larger

than those of τ̂s1. For AIPW estimator, difference between τ̂s2 and τ̂s1 is greater than the

corresponding difference based on regression model. Given the results, we may conclude

that the adoption of U-Bridge has positive spillover effect. Substantively, it means that if a

resident is connected to other adopters, she may also be more active in political participa-

tion. In addition, the magnitude of such spillover effects increase as number of connections

with adopters increases. While the patterns of estimates are similar, discrepancies between

AIPW estimator and regression model may arise from neglecting the network formation

process and misspecification of the outcome model. The AIPW estimator, however, is

doubly robust and does not impose strong assumptions on the structure of spillover effects.

7 Conclusion

In this paper, we propose a generalized propensity score based approach to identification

and estimation of treatment effects from observational social network data. In such data,

treatment assigned to one unit may affect potential outcome of other units. Meanwhile,

there may be some covariates that determines adoption of the treatment, formation of social

ties and observed behavioral outcomes, making identification and estimation a challeng-

ing task. To incorporate the rich interactions between treatment assignment and network

formation process, we propose to jointly model these two processes. Given a known func-
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Figure 6: Estimated Effects of U-Bridge Adoption on Political Participation

Note: The left panel shows estimated direct effects and the right panel shows estimated spillover effects

based on different approaches. Abbreviations “AIPW” represents the proposed method.

tional form of exposure mapping that determines the effective treatment level, generalized

propensity score for each treatment level is estimated based on the probabilistic models for

treatment assignment and network formation. An estimate of average potential outcome

and treatment effect is obtained by implementing inverse probability weighting estimators.

We investigate its performance and finite sample properties in several Monte Carlo

studies and illustrate its applicability in an empirical application on the effect of adop-

tion of a new political communication technology on political participation. We compare

the estimation results obtained from the proposed AIPW estimator and regression model.

Their differences may arise from misspecification of regression model and ignoring network

formation process. For practical insights, researchers should consider network formation

process, treatment assignment mechanism, and potential interactions between these pro-

cesses when estimating treatment effects from social network data. Only then can they

select the most appropriate estimation strategy for their specific empirical setting.

While the proposed method can incorporate different types of treatment variables and

networks and complex interactions between them in observational data, it has several lim-
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itations. First, it still relies on strong assumptions about the parametric forms of treat-

ment assignment mechanism, network formation process, and functional form of exposure

mapping. Misspecification in any of these can lead to bias in estimation. Second, the

method is computationally more intensive compared to some existing approaches that di-

rectly estimate generalized propensity scores through parametric models, limiting its prac-

tical application to relatively small datasets. Finally, the proposed method is designed for

cross-sectional data where the network is random but static. Extending this framework

to account for interactions and feedback among treatment assignment, network dynamics,

and behavioral outcomes is essential for advancing causal inference in longitudinal social

network data and represents an important avenue for future research.
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SUPPLEMENTARY MATERIAL

A Proofs

1. Proof for proposition 1. First, it is obvious that X contains all information about

GPS r(i, t;X). Therefore,

Pr(Ti = t|X, r(i, t;X))

=E [1{e(i,D,W ) = t}|X, r(i, t;X)]

=E [1{e(i,D,W ) = t}|X]

=Pr(Ti = t|X)

=r(i, t;X).

(26)

By the law of iterated expectation, we have

Pr(Ti = t|r(i, t;X))

=E [1{e(i,D,W ) = t}|r(i, t;X)]

=E [E[1{e(i,D,W ) = t}|X]|r(i, t;X)]

=E [r(i, t;X)|r(i, t;X)]

=r(i, t;X).

(27)

Therefore, Pr(Ti = t|X, r(i, t;X)) = Pr(Ti = t|r(i, t;X)). Next, we prove the

balancing property of GPS.

Pr(Ti = t|Yi(·), r(i, t;X))

=E [1{e(i,D,W ) = t}|Yi(·), r(i, t;X)]

=E [E[1{e(i,D,W ) = t}|X, Yi(·), r(i, t;X)]|Yi(·), r(i, t;X)]

=E [E[1{e(i,D,W ) = t}|X, Yi(·)]|Yi(·), r(i, t;X)]

=E [E[1{e(i,D,W ) = t}|X]|Yi(·), r(i, t;X)]

=E [r(i, t;X)|Yi(·), r(i, t;X)]

=r(i, t;X).

(28)
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We have the third line in Equation (28) by the law of iterated expectation, and

then the fourth line because X contains all information about GPS r(i, t;X). By

condition (7), we have the fifth line.

2. Proof for proposition 2.

E{Yi1{Ti = g(i,D,W ) = t}
r(i, t;X)

}

=E{E{Yi1{Ti = g(i,D,W ) = t}
r(i, t;X)

|X}}

=E{E{ Yi
r(i, t;X)

|Ti = t,X}Pr(Ti = t|X)}

=E{E{ Yi
r(i, t;X)

|Ti = t,X}r(i, t;X)}

=E{E{Yi|Ti = t,X}}

=E{E{Yi(t)|X}}

=E{Yi(t)}

=µ(t).

(29)

Therefore, average potential outcome µ(t) is identified given GPS r(i, t;X).

3. Proof for the asymptotic distribution (20) of the AIPW estimator (19). Define

τi(t, t
′) =[1{Ti = t}Yi − µ(i, t,X)

r(i, t;X)
+ µ(i, t,X)]

− [1{Ti = t′}Yi − µ(i, t′,X)

r(i, t′;X)
+ µ(i, t′,X)]

and φi(t, t
′) = τi(t, t

′)− τ(t, t′). First, we list the set of regularity conditions:

(a) Denote CN the σ-algebra generated by X. {τi(t, t′)}Ni=1 is ψ-dependent given CN .

(b) Moment conditions.

i. There exists M < ∞ and p > 4 such that for all N ∈ N, i ∈ {1, . . . , N},

d ∈ {0, 1}N , and w ∈ W , E [|Yi(d,w)|p |X] < M a.s.

ii. There exists [π, π̄] ⊂ (0, 1) such that for all N ∈ N, i ∈ {1, . . . , N}, t ∈ T ,

r̂(i, t;X) and r(i, t;X) ∈ [π, π̄] a.s.

(c) Convergence rates of estimated generalized propensity score and outcome model.
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i. N−1
∑N

i=1 (r̂(i, t;X)− r(i, t;X))2 = op(1) andN
−1

∑N
i=1 (µ̂(i, t,X)− µ(i, t,X))2 =

op(1).

ii. N−1
∑N

i=1 (r̂(i, t;X)− r(i, t;X))2N−1
∑N

i=1 (µ̂(i, t,X)− µ(i, t,X))2 = op (N
−1).

iii. N−1
∑N

i=1 (µ̂t(i,X,A)− µt(i,X,A)) (1− 1{Ti = t}r(i, t;X)−1) = op

(
N− 1

2

)
.

(d) Weak dependence. Error terms {(ϵwij, ϵdi , ϵ
y
i )}Ni,j=1 in NP-SEM (1) are indepen-

dently distributed conditional on X a.s.

Then we decompose
√
N (τ̂ (t, t′)− τ (t, t′)) as:

√
N (τ̂ (t, t′)− τ (t, t′)) =

1√
N

N∑
i=1

φi(t, t
′)−R1t +R1t′ −R2t +R2t′ , (30)

where

R1t =
1√
N

N∑
i=1

1{Ti = t} (Yi − µ(i, t,X))

r̂(i, t;X)r(i, t;X)
(r̂(i, t;X)− r(i, t;X)) ,

R1t′ =
1√
N

N∑
i=1

1{Ti = t′} (Yi − µ(i, t′,X))

r̂(i, t′;X)r(i, t′;X)
(r̂(i, t′;X)− r(i, t′;X)) ,

R2t =
1√
N

N∑
i=1

(µ̂(i, t,X)− µ(i, t,X))

(
1− 1{Ti = t}

r̂(i, t;X)

)
,

R2t′ =
1√
N

N∑
i=1

(µ̂(i, t′,X)− µ(i, t′,X))

(
1− 1{Ti = t′}

r̂(i, t′;X)

)
.

We follow Leung and Loupos (2022) to apply Theorem 3.2 in Kojevnikov et al. (2021)

and obtain

σ−1
t,t′

1√
N

N∑
i=1

φi(t, t
′)

d−→ N (0, 1).

By Theorem 3 in Leung and Loupos (2022), R1t = op(1), R1t′ = op(1), R2t = op(1),

and R2t′ = op(1). Thus,

σ−1
t,t′

√
N(τ̂(t, t′)− τ(t, t′))

d−→ N (0, 1). (31)

B Additional Results for Monte Carlo Studies

Results for treatment effects estimation based on regression model for DGP (23) are sum-

marized in Table 4 and Table 5.
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Table 4: Regression: Finite Sample Properties: τ((1, 1), (0, 1))

Nc Bias RMSE Coverage Rate SE SE - SD
50 −0.401 0.449 0.488 0.201 −0.002
100 −0.388 0.413 0.228 0.142 0.000
200 −0.389 0.402 0.028 0.100 0.000
500 −0.389 0.394 0.000 0.063 0.000
1000−0.390 0.393 0.000 0.045 0.000

Table 5: Regression: Finite Sample Properties: τ((1, 1), (1, 0))

Nc Bias RMSE Coverage Rate SE SE - SD
50 −0.350 0.382 0.370 0.151 −0.001
100 −0.348 0.364 0.105 0.107 −0.001
200 −0.344 0.353 0.007 0.076 −0.001
500 −0.344 0.348 0.000 0.048 0.000
1000−0.343 0.345 0.000 0.034 0.000

To investigate whether the proposed method is robust to heterogeneous treatment effects

(HTE), we consider an alternative data generating process for the potential outcome:

Yi(d, z) = 1 +Xi +

∑
j∈c(i),j ̸=iXj

3
+ d+ 0.5z + dz +Xidz + εi, εi ∼ N(0, 1). (32)

Therefore, the individual level treatment effect Yi(d, z)− Yi(d̃, z̃) depends on the covariate

Xi. For the AIPW estimator, results for both treatment effects are summarized in Table 6

and Table 8. And for regression based estimator, results are summarized in Table 7 and

Table 9. For model comparison, bias and RMSE plots for the spillover effect are displayed

in Figure 7. We find that the results are quite similar to the case of constant treatment

effect, though sampling variation for the AIPW estimator is larger when treatment effects

are heterogeneous. Therefore, the proposed method performs well even when treatment

effects are heterogeneous.

C Additional Results and Plots for the Empirical Ap-

plication

This section includes additional results and plots for the empirical application. Figure 8 and

Figure 9 display network structures for the rest 15 villages in the data sample. Residents
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Table 6: Finite Sample Properties (HTE): τ((1, 1), (0, 1))

Nc Bias RMSE Coverage Rate SE SE - SD
50 0.023 0.504 0.938 0.444 −0.065
100 0.003 0.350 0.953 0.333 −0.022
200 0.001 0.257 0.949 0.246 −0.013
500 0.003 0.172 0.950 0.162 −0.011
1000 0.002 0.115 0.958 0.115 −0.001

Table 7: Regression: Finite Sample Properties (HTE): τ((1, 1), (0, 1))

Nc Bias RMSE Coverage Rate SE SE - SD
50 −0.432 0.489 0.527 0.228 −0.004
100 −0.422 0.450 0.254 0.161 0.002
200 −0.421 0.437 0.046 0.114 −0.001
500 −0.422 0.428 0.000 0.072 0.001
1000−0.422 0.425 0.000 0.051 0.000
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Figure 7: Finite Sample Properties (HTE): Bias and RMSE

who adopted the U-Bridge program are highlighted in blue and Residents who occupy a

formal leader role within village are highlighted in red. Figure 10 and Figure 11 show esti-

mated coefficients with 95% confidence intervals in the network formation models across the

16 villages under study. Table 10 summarizes estimation results for treatment assignment

mechanism based on Logit model.
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Table 8: Finite Sample Properties (HTE): τ((1, 1), (1, 0))

Nc Bias RMSE Coverage Rate SE SE - SD
50 0.033 0.428 0.931 0.385 −0.046
100 0.001 0.301 0.944 0.290 −0.016
200 0.004 0.212 0.945 0.212 −0.002
500 −0.002 0.143 0.952 0.140 −0.004
1000 0.002 0.094 0.964 0.099 0.004

Table 9: Regression: Finite Sample Properties (HTE): τ((1, 1), (1, 0))

Nc Bias RMSE Coverage Rate SE SE - SD
50 −0.091 0.232 0.879 0.204 −0.011
100 −0.091 0.171 0.882 0.146 −0.002
200 −0.085 0.134 0.854 0.104 −0.001
500 −0.086 0.108 0.740 0.067 0.000
1000−0.083 0.095 0.566 0.047 0.001
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Table 10: Estimation Results for Treatment Assignment Mechanism

Treatment Variable Individual Adoption of U-Bridge Program (Di)

Age -0.008

(0.007)

Female -1.189***

(0.233)

Income 0.018

(0.087)

Education 1.960***

(0.234)

Leader 0.771**

(0.241)

Care Community -1.164**

(0.437)

Has Phone 1.304***

(0.309)

Village Fixed Effects ✓

Notes: Robust standard errors clustered at village level are in the parentheses.

*** p < 0.01, ** p < 0.05, * p < 0.1.
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